
J
H
E
P
0
6
(
2
0
0
6
)
0
3
1

Published by Institute of Physics Publishing for SISSA

Received: May 16, 2006

Accepted: May 24, 2006

Published: June 15, 2006

Dynamical SUSY breaking at meta-stable minima

from D-branes at obstructed geometries

Sebastián Franco

Joseph Henry Laboratories, Princeton University

Princeton, NJ 08544, U.S.A.∗

E-mail: sfranco@feynman.princeton.edu

Angel M. Uranga

PH-TH Division, CERN

CH-1211 Geneva 23, Switzerland, and

Instituto de F́ısica Teórica, C-XVI
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1. Introduction

The realization of supersymmetric gauge field theories on the world-volume of D-brane con-

figurations in String Theory has proved to be an extremely insightful tool in the study of

non-trivial gauge dynamics. In the context of N = 1 supersymmetric gauge field theories,

an interesting class of models is obtained by considering systems of D3-branes at Calabi-

Yau singularities, possibly in the presence of fractional branes. The resulting quiver gauge

theories lead, in the absence of fractional branes, to a tractable class of 4d strongly cou-

pled conformal field theories, which extend the AdS/CFT correspondence [1 – 3] to theories

with reduced (super)symmetry [4 – 6] and enable non-trivial precision tests of the corre-

spondence (see for instance [7, 8]).1 Quiver gauge theories constructed with both D3-branes

and fractional branes are not conformal and their RG flow involves cascades of Seiberg du-

alities [16 – 20]. Finally, quiver gauge theories on fractional branes lead to non-conformal

theories, with non-trivial strong dynamics effects, like confinement, or appearance of non-

perturbative superpotentials [16, 19, 21 – 23].

One of the most interesting strong dynamics effects in N = 1 supersymmetric gauge

field theories, both from the theoretical and the phenomenological viewpoints, is Dynam-

ical Supersymmetry Breaking. It is thus natural to ask whether it can be realized on the

world-volume of configurations of D-branes. Strictly speaking, dynamical supersymmetry

breaking requires the removal of the classical supersymmetric vacuum, and the appear-

ance of a global non-supersymmetric minimum of the potential. D-brane configurations

realizing this phenomenon have not been found yet. For instance, gauge theories on cer-

tain fractional branes at geometries without complex deformations have been shown to

develop non-perturbative superpotentials which remove the supersymmetric vacuum [21 –

23]. However, the scalar potential of these theories, at least in the large field region where

the Kähler potential can be trusted, leads to a runaway to infinity [22] (see also [24, 25]).

An interesting alternative proposal is that dynamical supersymmetry breaking occurs

at local meta-stable minima, separated from supersymmetric vacua by a large potential

barrier. This idea, which first appeared in phenomenological model building (see e.g. [26])

has been realized in [27] in a strikingly simple system. The authors show that the intro-

duction of massive flavors to SU(N) SYM, with masses much smaller that the dynamical

scale of the gauge sector, leads to the appearance of such a local meta-stable minimum,

separated from the N supersymmetric minima by a potential barrier. Furthermore, the

non-supersymmetric minimum can be made parametrically long-lived. We refer to this

theory as the ISS model.

It is a natural question whether the introduction of extra massive flavors in more

involved gauge theories also leads to such local meta-stable minima. In particular it would

be interesting to explore this question for gauge theories realized on D-branes. These are

the questions we address in the present paper. We find interesting generalizations of the ISS

proposal, and find that the introduction of extra massive flavors leads to the appearance

1In the past few years there has been tremendous progress in our understanding of AdS/CFT dual pairs.

In addition to the papers mentioned in the introduction, some of the works that have been crucial for these

developments are [11]–[15].
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of local non-supersymmetric minima in diverse gauge theories with massless flavors. These

theories include a simple extended version of SU(N) SQCD, and the gauge theory on

fractional branes on the complex cone over dP1 (and related examples). Moreover, we

argue that such local minima are likely to appear in quiver gauge theories of fractional

branes in obstructed geometries (the so-called DSB fractional branes [22]).

The study of such generalization requires the development of new results in several

directions, which are of interest in their own right, and which we provide in the present

paper. The main results are as follows:

• Since quiver gauge theories contain massless bi-fundamentals, it is first necessary

to consider the generalization of the ISS proposal to theories with massless flavors.

Hence, we study the introduction of additional massive flavors to SQCD with massless

flavors in detail. We show that this theory does not have local meta-stable minima

at one-loop, in contrast with the ISS case.

• We consider a simple extension of SQCD with massless flavors, by introducing extra

fields with cubic coupling to the flavors. We study the introduction of additional

massive flavors in this theory in detail, and show the appearance of local meta-

stable minima. Interestingly this extended theory, which naturally generalizes the

ISS proposal to theories with massless flavors, is tantalizingly similar to the quiver

gauge theories on fractional branes at obstructed geometries. It hence provides an

excellent toy model of the behavior for the latter.

• We then consider the quiver gauge theory on fractional branes at the simplest example

of an obstructed geometry, namely the complex cone over dP1 (equivalent to the real

cone over Y 2,1). We carry out the gauge theory analysis of this dP1 theory upon

the addition of extra massive flavors, and show the appearance of a non-trivial local

minimum separated by a potential barrier from the supersymmetric minimum at

infinity (equivalently, from the runaway behavior at large fields). The structure of

fields and couplings, key to the existence of this minimum, is a general feature of

gauge theories on fractional branes at obstructed geometries, strongly suggesting a

generalization to this full class.

• Finally, an explicit construction of this gauge theory in String Theory requires a D-

brane realization of the incorporation of massive flavors. This is naturally achieved

by the introduction of D7-branes in the configurations, which however has not been

discussed in the literature for the case of general toric singularities. We carry out this

analysis and provide new tools to introduce such D7-branes and easily determine the

structure of new flavors from D3-D7 open strings, and their interactions. The flavor

mass terms receive a natural interpretation in terms of vevs for higher dimensional

scalars in the D7-D7 sector, which trigger a geometrical process that recombines

several D7-branes, separating them from the D3-branes at the singularity.

The outcome is that gauge theories on fractional branes at obstructed geometries

provide a natural generalization of the ISS proposal to quiver gauge theories. Although
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the computational difficulties allow us to establish this result only in particular examples,

we find convincing evidence that the picture is far more general. We expect that future

work in this direction confirms this expectation.

The above results are discussed in different sections. Some of them are presented as

appendices to simplify the reading. The paper is organized as follows.

In section 2 we study SQCD-like theories. Section 2.1 reviews the ISS model for SYM

with extra massive flavors. Section 2.2 studies the introduction of massive flavors in SQCD

with massless flavors, which does not lead to a local minimum. In section 2.3 we describe an

extension of SQCD with massless flavors, discuss its dynamics, and study the introduction

of massive flavors, which in this case lead to a non-trivial, SUSY breaking minimum. We

show that this minimum can be made parametrically long-lived.

Section 3 provides mostly background material. Properties of fractional branes and

their quiver gauge theories are sketched in section 3.1. Section 3.2 motivates focusing on

fractional D-branes at obstructed geometries. Section 3.3 reviews the dynamics of the

simplest example in this class, the dP1 theory, in the absence of extra massive flavors.

Section 4 considers the quiver theory arising on fractional branes on the complex

cone over dP1 when massive fundamental flavors are added from a purely field theoretic

perspective. This model is almost identical to the one in section 2.3 and we show that

it has a meta-stable SUSY breaking minimum. We also show that the minimum can

be parametrically long-lived. Before the addition of massive flavors, this theory is the

simplest example of dynamical SUSY breaking (with runaway to infinite field values) due

to obstructed deformation.

Section 5 explains how to engineer the gauge theory of section 4 using D-branes in the

complex cone over dP1. The additional fundamental flavors are incorporated by introducing

D7-branes at the singular geometry, while the flavor masses correspond to suitable vevs for

D7-D7 scalars.

Appendix A describes the computation of the one-loop potential for classically flat

directions in order to verify the existence or not of local SUSY breaking minima in the

different theories we consider. Appendix A.1 considers SQCD with massless and additional

massive flavors, appendix A.2 studies the extended version, and appendix A.3 describes

the computation for the dP1 theory.

Appendix B develops a general method to construct a class of D7-branes wrapping

holomorphic 4-cycles in generic toric singularities and to identify their effect in the gauge

theories on probe or fractional D3-branes. Appendix B.1 describes the construction for the

complex cone over dP0, where it can compared with orbifold techniques, since the geometry

is C
3/Z3. The rules are generalized in appendix B.2, and applied for the complex cone over

dP1 in appendix B.3.

2. Meta-stable vacua in N = 1 SQCD-like theories with massive and mass-

less flavors

In this section we first review the analysis in [27] to determine the existence of meta-stable

vacua in N = 1 SU(Nc) SYM with massive flavors, and then generalize it to SU(Nc) SQCD

– 4 –
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with massless and massive flavors. We show that this theory does not have a meta-stable

SUSY breaking minimum. We then construct a simple modification of the model that

possesses a meta-stable SUSY breaking minimum. This model constitutes an interesting

proposal for SUSY breaking in theories with massless flavors. In addition, it will be an

extremely useful toy model of more involved quiver gauge theories arising from D3-branes

at singularities in section 4.

2.1 N = 1 SQCD with light massive flavors

Let us recall the system studied in [27]. Consider SU(Nc) SYM with Nf massive flavors

Q, Q̃ with mass much smaller than ΛSQCD, the dynamical scale of the gauge theory. We

consider the flavor fields to have canonical Kähler potential.

The superpotential of the electric theory, for the case of equal flavor masses, is

W = m tr Q̃Q . (2.1)

In order to have an IR free dual description, so that the Kähler potential is under control

in the small field region, we require 2 Nc + 1 ≤ Nf < 3
2Nc.

The dual theory is SU(N) SYM with N = Nf − Nc, with Nf flavors q, q̃, and mesons

M . They transform as ( , , 1), ( , 1, ) and (1, , ) under the SU(N)×SU(Nf )×SU(Nf )

color and flavor symmetry. The superpotential for the dual theory is

W =
1

Λ̂
Tr Mqq̃ + m TrM (2.2)

where Λ̂ is related to the dynamical scale ΛSQCD of the electric theory and Λ of the

magnetic theory by

Λ
3Nc−Nf

SQCD Λ3(Nf−Nc)−Nf = Λ̂Nf (2.3)

By redefining3 the mesons as Φ = M/Λ and introducing the couplings h = Λ/Λ̂, µ2 = −mΛ̂,

the superpotential is of the form

W = h Tr q Φ q̃ − hµ2 Tr Φ (2.4)

(where the traces run over flavor indices). Notice that for Nf = Nc + 1 some further

discussion is needed to establish that this superpotential correctly describes the effective

dynamics, see [27] for details. A similar comment applies to all our forthcoming theories.

This theory breaks supersymmetry at tree level, since the F-flatness for Φ requires

q̃i qj = µ2 δi
j (2.5)

2The possibility of extending the conclusions presented in this section outside of this range has been

contemplated in [27].
3In this simplified discussion, we ignore possible normalization factors in the Kähler potential of the

fields. They can be nevertheless absorbed in additional redefinitions of flavor fields, mesons, and couplings,

see [27] for details. A similar comment applies to later examples.
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which cannot be satisfied, given that the rank of δi
j is Nf while the rank 4 of q̃i qj is

N < Nf . This mechanism for spontaneous SUSY breaking at tree-level has been dubbed

the rank condition mechanism in [27]. There is a classical moduli space of minima with

Vmin = (Nf − N)|h2µ4|, parametrized by the vevs

Φ =

(

0 0

0 Φ0

)

q =

(

ϕ0

0

)

, q̃T =

(

ϕ̃0

0

)

, with ϕ̃0ϕ0 = µ21N . (2.6)

A careful analytical computation shows that all pseudomoduli (classical flat directions not

corresponding to Goldstone directions) are lifted by the one-loop effective potential, and

that the maximally symmetric point in the classical moduli space

Φ0 = 0, ϕ0 = ϕ̃0 = µ1N, (2.7)

is a minimum of the one-loop effective potential. The one-loop effective potential at a

generic point in the classical moduli space (2.6) is the Coleman-Weinberg potential induced

by the massive fluctuations around that point. We refer the reader to [27] for additional

details, and to appendix A for similar computations (in more involved situations).

The SU(N) gauge dynamics is IR free and hence not relevant in the small field region,

but it is crucial in the large field region. In fact, it leads to the appearance of the Nf −N

supersymmetric vacua predicted by the Witten index in the electric theory. In the region

of large Φ vevs, |µ| ¿ |〈hΦ〉|, the Nf flavors get large masses due to the cubic coupling in

(2.4), and we recover pure SU(N) SYM dynamics, with a dynamical scale Λ′ given by

Λ′3N =
hNf det Φ

ΛNf−3N
(2.8)

where Λ is the Landau pole scale of the IR free theory. The complete superpotential,

including the non-perturbative SU(N) contribution is

W = N (hNf Λ−(Nf−3N) det Φ )1/N − hµ2 Tr Φ . (2.9)

This superpotential leads to Nf − N supersymmetric minima at

〈hΦ〉 = Λ ε
2N

Nf−N 1Nf
= µε

−
N

f
−3N

Nf−N 1Nf
(2.10)

where ε ≡ µ
Λ . In the regime ε ¿ 1, the vevs are much smaller than the Landau pole

scale, and the analysis can be trusted. Notice also that these minima sit at |〈hΦ〉| À |µ|,

hence at a very large distance in field space from the local non-supersymmetric minimum.

This large distance, in conjunction with the height of the potential barrier separating them

from the non-SUSY minimum (which can be estimated from the classical superpotential)

determines that the SUSY breaking meta-stable minimum is parametrically long-lived [27].

4Since the theory is IR free, the rank of q̃i qj corresponds to its classical value.
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2.2 N = 1 SQCD with massless and massive flavors

In this section we extend the previous discussion about meta-stable vacua in N = 1 SQCD

with massive flavors [27] to another system. We investigate the case in which, in addition

to light massive flavors, there are massless flavors. We consider SU(Nc) SQCD with Nf,0

massless flavors Q̃0, Q0 and Nf,1 massive flavors Q̃1, Q1, with mass much smaller than

ΛSQCD. Again, we consider canonical Kähler potential for these fields. To simplify the

expressions, flavor indices are kept implicit. The superpotential, for the equal mass case,

is thus

W = m Tr Q̃1Q1 . (2.11)

As before, in order to have control over the computations in the IR, we consider the

theory in the free magnetic range Nc + 1 ≤ Nf = Nf,0 + Nf,1 < 3
2Nc. In order for the

classical theory to have SUSY breaking due to rank condition mechanism at tree level, we

further require

Nf,1 > N = Nf,0 + Nf,1 − Nc ⇔ Nc > Nf,0 . (2.12)

This condition is interesting, and will reappear in sections 3.2 and 4 in the context of

branes at singularities. We now study this theory in detail since it is natural to ask

whether a SUSY breaking meta-stable minimum exists. It will also serve as a warm-up for

the modified model of section 2.3.

The dual magnetic theory is SU(N) SQCD with N = Nf − Nc, and dynamical scale

Λ. There are Nf = Nf,0 +Nf,1 flavors q̃0, q0 and q̃1, q1, and the mesons Φ00, Φ01, Φ10, Φ11.

The latter can be expressed as composites of the electric theory, namely Φij = 1
ΛQ̃iQj.

The complete superpotential, in the limit where the SU(N) dynamics is ignored, can be

written

W = h Tr q Φ q̃ − hµ2 Tr Φ11 (2.13)

where h and µ are defined as in the theory without massless flavors in section 2.1. Notice

that for simplicity we have taken the coupling constants of the cubic terms involving Φij,

i, j = 0, 1, to be equal, even though no global symmetry imposes that restriction.

The equations of motion for Φ11 are

q̃i
1 q1,j = µ2 δi

j . (2.14)

Since Nf,1 − N = Nf,1 − (Nf,1 + Nf,0 − Nc) = Nc − Nf,0 > 0, there is SUSY breaking by

the rank condition.

Absence of a local minimum. A detailed analysis of moduli and pseudomoduli and

the computation of their masses is provided in appendix A.1. We summarize the results

here.

There is a classical moduli space of degenerate supersymmetry breaking minima with

Vmin = (Nf,1 − N)|h2µ4|. This classical moduli space can be parametrized as follows

q0 = q̃0 = 0 q1 = ( ϕ1 ; 0 ) q̃1 =

(

ϕ̃1

0

)

Φ01 = ( 0 ; Y ) Φ10 =

(

0

Ỹ

)

Φ11 =

(

0 0

0X1

) (2.15)
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where ϕ̃1, ϕ1 are N × N blocks satisfying ϕ̃1ϕ1 = µ2 1N. In addition, Y , Ỹ and X1 are

Nf,0 × (Nf,1 −N), (Nf,1 −N)×Nf,0 and (Nf,1 −N)× (Nf,1 −N) blocks, respectively. The

vev for Φ00 = X0 is arbitrary.

Goldstone bosons corresponding to broken global symmetries remain exactly massless.

Integrating out classically massive fluctuations, the one-loop effective potential becomes

〈V
(1)
eff 〉 = const. + |h4µ2|

(log 4 − 1)

16π2
N ×

×
[

(Nf − N)
(

2 |δΦ1|
2 + |µ2|(θ + θ∗)2

)

+ Ñ
(

|δY |2 + |δỸ |2
)]

+ · · · . (2.16)

The variables θ, etc are defined in (A.6) and Ñ = min(Nf,0, Nf,1−N). This expression

assumes that the non-vanishing parts of Y and Ỹ are proportional to the identity. See (A.9)

for a slightly more general equation.

We see that δΦ0 remains massless at 1–loop. In principle, it is still possible that δΦ0

becomes massive at higher loops, producing a meta-stable minimum (probably with a much

smaller potential barrier) at small expectation values for the fields. We will not consider

this possibility, but will explore an extension of this model for which this flat direction is

lifted at the classical level in next section.

Behavior at large fields

In analogy with the case in section 2.1, we expect that in the large field region we recover the

low-energy structure of the SU(Nc) theory with Nf,0 < Nc flavors, namely an Affleck-Dine-

Seiberg (ADS) superpotential triggering a runaway behavior for the meson Φ0 = Q̃0Q0 of

the electric theory. This is indeed the case, and we now show it from the perspective of

the magnetic theory.

Consider a generic point in the moduli space of the magnetic theory with non-vanishing

expectation values of Φ00 and Φ11. The flavors q̃0 and q0 become massive, with mass matrix

hΦ00. Similarly, q̃1 and q1 get masses given by hΦ11. We can then integrate out these fields,

solving their equations of motion by setting Φ10 = Φ01 = 0. The resulting theory is pure

SU(N) with a dynamical scale given by

Λ′ 3N =
hNf det Φ00 det Φ1

ΛNf−3N
(2.17)

The complete superpotential, including the non-perturbative piece, reads

W = −hµ2 Tr Φ11 + N

(

hNf detΦ00 detΦ11

ΛNf−3N

)

1
N

(2.18)

Recall that Φ00 is (up to a rescaling by 1/Λ) equal to the meson Φ0 of the original

electric theory, so we are interested in its dynamics. The effective action for Φ00 can be

obtained by using the equation of motion for Φ11. Integrating out Φ11 we obtain

W = −(Nf,1 − N)

(

µ2Nf,1 ΛNf−3N

hNf,0 det Φ00

)

1
Nf,1−N

. (2.19)
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Noticing that Nf,1 − N = Nc − Nf,0 in terms of parameters of the electric theory, this is

exactly the runaway superpotential for Φ0 induced by SU(Nc) SQCD with Nf,0 massless

flavors. The unfamiliar structure of factors inside the bracket is simply due to the fact

that the SU(Nc) dynamical scale appears expressed in terms of the Landau pole scale of

the magnetic theory.

Notice that the runaway potential can be trusted as long as |h〈Φ00〉| ¿ Λ. For larger

fields, the electric theory completes the UV and ensures that the runaway persists to

infinity.

As described in section 2.2 and Appendix A.1, the one-loop potential for this theory

leaves the field Φ00 massless around the origin, and moreover slopes down as this field

increases. Hence, Φ00 is not stabilized in the small vev region. At large fields, we have a

runaway to infinity for this field. The most conservative proposal is thus to connect these

two behaviors in a constantly decreasing potential in the direction Φ00. Of course higher

loop contributions could in principle lead to a non-trivial behavior in the intermediate field

regime. Since this is however difficult to establish, in the next section we turn to the study

of a different theory, which incorporates a mild extension of the above model. We will

show that this new theory does have a meta-stable minimum separated from a runaway

behavior at infinity by a potential barrier. In addition, the extension brings the model

closer to quiver gauge theories with obstructed deformations, which are studied in later

sections.

2.3 Extension of SQCD with massless flavors

As discussed in the previous section, SQCD with massless and massive flavors does not have

a meta-stable SUSY breaking minimum at one-loop. In this section we propose a simple

extension of this theory that does have such meta-stable SUSY breaking minimum, which is

separated from a runaway behavior at infinity by a potential barrier and is parametrically

long-lived.

The extension amounts to the introduction of a new field Σ0, with cubic coupling to the

flavors of the original electric theory. The role of this extension in leading to a meta-stable

vacuum is easily understood. In the dual theory, the field Σ0 couples to the meson Φ00 via

a mass term, forcing the vev of the latter to vanish. Hence the new term eliminates the

Φ00 direction which was not properly lifted by the one-loop potential.

The extended theory without massive flavors

Let us start by describing the extended theory and its dynamics in the absence of massive

flavors. Consider SU(Nc) SQCD with Nf,0 < Nc massless flavors Q̃0, Q0 and add a set of

singlets Σ0, transforming in the bi-fundamental of the SU(Nf,0)
2 flavor global symmetry,

with a superpotential

Wext = g Tr Q0 Σ0 Q̃0 (2.20)

where g is a dimensionless coupling.5 We consider canonical Kähler potentials for all fields.

5This model has been discussed in [28], where it was called SSQCD (for singlets + SQCD). In that

paper, the IR phases of this theory were studied using Seiberg duality and a-maximization.
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This theory has a runaway behavior in the new field Σ0. To show this, we introduce

the gauge invariant mesons6 Φ0 = Q0Q̃0. The complete superpotential is

W = g Tr Σ0Φ0 + (Nc − Nf,0)





Λ
3Nc−Nf,0

SQCD

detΦ0





1
Nf,0−Nc

(2.21)

Upon using the equation of motion for Φ0 we have

W = Nc

(

g Nf,0 Λ
3Nc−Nf,0

SQCD detΣ0

)
1

Nc (2.22)

This is indeed a runaway behavior: the F-term for Σ0 gives

∂W

∂(Σ0)ij
' (det Σ0)

1/Nc (Σ−1
0 )ji (2.23)

which, scaling Σ0 → λΣ0, scales as λ
Nf,0−Nc

Nc . Hence since Nf,0 < Nc, the F-terms relax

to zero for large fields. With some foresight, we note that this behavior is completely

analogous to the one we will discuss in section 3.3 for the dP1 quiver gauge theory.

Introducing massive flavors in the extended theory

The above theory is a close cousin of SQCD, and in particular it shares its runaway behavior

(albeit in a different field direction). However, as we discuss later, they differ in their

dynamics when extra light massive flavors are introduced. In particular, the extended

theory will show meta-stable minima.

The extended theory with massive flavors is a combination of the SQCD with massless

and massive flavors of section 2.2 and the extension term introduced above. Hence we

consider SU(Nc) SQCD with Nf,0, Nf,1 massless and massive flavors, and fields Σ0, coupled

to the massless flavors via (2.20). As in section 2.2, we consider Nf,0 < Nc and hence

Nf,1 > N , so that the dual theory has supersymmetry breaking by the rank condition at

tree level.

The dual magnetic theory is SU(N) SQCD with N = Nf − Nc, and Nf = Nf,0 + Nf,1

flavors, with dynamical scale Λ. We also have mesons Φij = 1
ΛQ̃iQj, and the classical

superpotential

W = h Tr q Φ q̃ − hµ2 TrΦ11 + hµ0 Tr Σ0Φ00 (2.24)

where h = Λ/Λ̂, µ2 = −mΛ̂, µ0 = gΛ, and Λ̂, Λ are related to the electric scale ΛSQCD by

(2.3).

As usual the equations of motion for Φ11 lead to SUSY breaking by the rank condition.

6Although almost identical, this meson differs slightly from the Φ00 we defined in section 2.2. The latter

was an elementary field in the magnetic theory, so we included a power of Λ in its definition to give it

canonical dimensions.
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The local minimum

Although (2.20) is a simple modification of (2.13), the addition of the new field and its

interactions has a drastic effect in the small field region of the theory. A full discussion

of pseudomoduli and their masses in this theory is given in Appendix A.2. The classical

SUSY breaking minima are parametrized as in (2.15), with X0 fixed to zero by the tree-level

superpotential (i.e. X0 is no longer a pseudomodulus).

The one-loop effective potential has a critical point at Φ1 = Y = Ỹ = (θ + θ∗) = 0.

Around this point, it becomes

〈V
(1)
eff 〉 = const. + |h4µ2|

(log 4 − 1)

16π2
N ×

×
[

(Nf − N)
(

2 |δΦ1|
2 + |µ2|(θ + θ∗)2

)

+ Ñ
(

|δY |2 + |δỸ |2
)]

+ · · · . (2.25)

Hence, all pseudomoduli get positive masses and are thus stabilized. The critical point

becomes a meta-stable minimum, whose longevity we analyze later. Again the expression

above corresponds to the non-vanishing parts of Y and Ỹ being proportional to the identity.

Equation (A.12) gives the general result.

Behavior at large fields

In the large field region of the theory (2.24), we expect to recover the behavior in the

absence of massive flavors. Namely, we expect a runaway of Σ0 dictated by (2.22). This is

indeed the case as we now show.

We can study the large field region by considering the expression (2.19), which de-

scribes the large field behavior for the non-extended theory, and adding the extension term

−hµ0 Tr Φ0Σ0. Upon integrating out Φ00, we obtain

W = −(Nf − N)
(

µ
Nf,0

0 µ2Nf,1 ΛNf−3N det Σ0

)
1

Nf−N
. (2.26)

Recalling that Nf − N = Nc in terms of the underlying electric theory, this behav-

ior7 is essentially identical to the runaway of the extended theory without the massive

flavors (2.22). The different factors inside the bracket are simply due to expressing the

superpotential in terms of the Landau pole scale of the magnetic theory.

Lifetime of meta-stable vacua. The decay rate is proportional to the semi-classical

decay probability. This probability is proportional to exp(−S), where the bounce action

S is the difference in the Euclidean action between the tunneling configuration and the

meta-stable vacuum.

The SUSY breaking, meta-stable vacuum is given by

q1 = ( ϕ1 ; 0 ) q̃1 =

(

ϕ̃1

0

)

(2.27)

with ϕ̃1 = ϕ1 = µ1N, and all the other fields having a zero expectation value.

7Notice that, despite the fact that Φ00, Φ11 → 0 as Σ0 runs to infinity, for each fixed value of Σ0 the

flavor masses remain parametrically larger (for ε = µ/Λ ¿ 1, αµ = µ0/µ À 1) than the vacuum energy,

hence it is consistent to keep them integrated out, as implicitly done in our computation.
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Figure 1: A triangular potential barrier.

We saw in the previous section that the SUSY vacuum corresponds to Σ0 running away

to infinity due to the superpotential (2.26). Simultaneously, the equations of motion force

the fields Φ00 and Φ11 to have non-zero vevs, adjusted to the Σ0 vev.

In order to estimate the bounce action, we must find a trajectory in field space con-

necting the meta-stable and SUSY vacua such that the potential barrier is minimum. The

classical superpotential (2.24) does not have any coupling that would give rise to contribu-

tions to the classical scalar potential of the form |h2ϕ1Σ0|
2 or |h2ϕ̃1Σ0|

2. Such contributions

would become very large as Σ0 runs away if ϕ1 or ϕ̃1 do not vanish. Anyway, it is con-

venient to consider the following simple trajectory connecting both vacua, which exhibits

the characteristic barrier height and distance in field space separating the meta-stable and

SUSY vacua: first go to the origin, where the potential is

VT = Nf,1 |h
2µ4| (2.28)

and then approach the SUSY vacuum at infinity increasing Σ0.

To estimate S, we model the potential as a triangular barrier, for which the exact

bounce action has been derived in [29]. A triangular barrier has the general form depicted

in figure 1.

We define the quantities ∆φ± = ±(φT−φ±) and ∆V± = (VT−V±). A triangular barrier

is a good approximation in cases in which the gradient of the potential is approximately

constant at both sides of the peak. In this case,

S ∼

∣

∣(∆φ+)2 − (∆φ−)2
∣

∣

2

∆V+
. (2.29)

Modeling the barrier should be done in slightly different way from the SQCD with light

flavors case [27], since in this case there is a runaway and the potential does not vanish

at finite values of the fields. The slope of our potential becomes progressively smaller as

Σ0 → ∞. A cartoon of the potential is presented in figure 2, showing the criterion we will

use to define the triangular barrier.

We should interpret the variable φ in figure 2 as parametrizing the trajectory in field

space connecting the meta-stable and SUSY vacua. Hence, the region before the peak
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Figure 2: Sketch of the potential along the bounce trajectory and the triangular barrier we use to

model it.

corresponds to motion in ϕ1 and ϕ̃1, and the region after it corresponds to motion in the

Σ0 direction. In addition, figure 2 is not drawn at scale, and the distance between the

meta-stable minimum and the peak is negligible with respect to the rest of the plot.

Since the potential does not vanish, but asymptotes zero, we define φ− as the point in

the large field region at which the potential falls below |h2µ4|. The height of the barrier

is also of order |h2µ4|. At the level of the estimations we are making, the calculation we

perform would also correspond to an alternative criterion: assuming that V (φ−) = 0 (for

φ− as just defined) thus underestimating the barrier and producing a lower bound for the

bounce action.

Taking the simple ansatz Σ0 = σ01Nf,0
, we obtain

V ∼
∣

∣

∣
µ2Nf,1µ

Nf,0

0 ΛNf−3Nσ
N−Nf,1

0

∣

∣

∣

2
Nf−N

. (2.30)

Then, in order to have V ∼ |h2µ4|, we have

|σ0−| ∼

∣

∣

∣

∣

∣

ΛNf−3Nµ
Nf,0

0

hNf−Nµ2(Nf,0−N)

∣

∣

∣

∣

∣

1
Nf,1−N

(2.31)

In our case, ∆φ− ∼ µ is negligible, ∆V+ ∼ |h2µ4| and ∆φ− ∼ σ0−. Using (2.29) we

obtain

S ∼
1

|h|6+4Nf,0/(Nf−N)

|αµ|
4Nf,0/(Nf,1−N)

|ε|4(Nf−3N)/(Nf,1−N)
(2.32)

where we have defined ε = µ/Λ as in section 2.1 and αµ = µ0/µ measures the strength of

the extension term relative to the rest of the superpotential. The general behavior is clear:

for a fixed value of the coupling h the lifetime can be made parametrically large by either

making the fundamental flavors in the original theory light (i.e. small ε) or by increasing

the relative strength of the extension term in the superpotential (given by αµ). A heuristic

reason for the latter is that αµ indicates how much the extension term “pushes” the system

into a runaway in the Σ0 direction.
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For Nf,0 = 0 (2.32) becomes

S ∼
1

|h|6
1

|ε|4(Nf,1−3N)/(Nf,1−N)
(2.33)

The result of [27] is identical to this one except that the power of |ε| is 4(Nf,1 −

2N)/(Nf,1 − N), i.e. larger, in that case. This discrepancy is precisely accounted for by

noticing that our criterion for determining the potential barrier underestimates ∆φ−, and

hence the bounce action, with respect to [27].

3. Review of fractional branes and obstructed deformations

In this section we describe quiver gauge theories based on D3-branes at singularities with

fractional branes. We point out that the gauge theories on the so-called ‘DSB fractional

branes’ have features analogous to the extended version of SQCD with massless flavors

studied above. This will motivate the study of these theories with additional massive

flavors in coming sections.

3.1 General review of fractional branes

D-branes at singularities provide a useful arena to study and test the gauge/string cor-

respondence, in situations with reduced (super)symmetry. In particular, the introduction

of fractional branes leads to interesting dual pairs involving non-conformal gauge theories

with non-trivial dynamics in the infrared. In the string construction, fractional branes

correspond to D-branes wrapped on cycles collapsed at the singularity, consistently with

cancellation of (local) RR tadpoles. At the level of the gauge theory, fractional branes

correspond to rank assignments for gauge factors in a way consistent with cancellation of

non-abelian anomalies.

A particularly well-known class of systems corresponds to D3-branes at toric singu-

larities. The corresponding gauge theories are described in terms of brane tiling or dimer

graphs [30 – 34]. We restrict to this class in what follows, although some facts are valid in

non-toric singularities as well.

A classification of different kinds of fractional branes, the infrared behavior of the

associated gauge theory, and corresponding features in the geometry, is as follows [22]:

• N = 2 fractional branes: these are fractional branes whose quiver gauge theory (in

the absence of D3-branes) corresponds to a closed loop of arrows passing through a set of

nodes, with the associated gauge invariant operator not appearing in the superpotential.

These fractional branes therefore have flat directions, parametrized by vevs for this mesonic

operator, and along which the effective theory is N = 2 supersymmetric. Geometrically,

these fractional branes exist for singularities which are not isolated, but have (complex)

curves of C
2/ZN singularities passing through them. The fractional branes correspond to

D5-branes wrapped on the 2-spheres collapsed at the latter. The prototypical example

is provided by branes at the C
2/Z2 singularity. In the gauge/gravity description, the IR

dynamics of the gauge theory (instantons and Seiberg-Witten points) corresponds to an

enhançon behavior on the gravity side.
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• Deformation fractional branes: these are fractional branes whose quiver is either

given by a set of decoupled nodes, or by a set of nodes joined by a closed loop of arrows, with

the corresponding gauge invariant operator appearing in the superpotential. Moreover, the

involved gauge factors all have the same rank. Geometrically, these fractional branes

are associated with a possible complex deformation of the singularity. These are easily

described in terms of splitting of the web diagram [35 – 37] of the singularity into sub-webs.

The prototypical example is provided by branes at the conifold singularity. The behavior

of the gauge theory corresponds to confinement of the involved gauge groups, and in the

dual gravity background this corresponds to a complex deformation leading to finite size

3-cycles.

• DSB fractional branes: these are fractional branes of any other kind, hence they pro-

vide the generic case. They are fractional branes for which the non-trivial gauge factors

have unequal ranks. Geometrically, they are associated with obstructed geometries, which

do not admit the corresponding complex deformation.8 As discussed in [21 – 23], the dy-

namics of the gauge theory corresponds to the appearance of an ADS superpotential which

removes the supersymmetric minimum. Moreover, as first discussed in [22] and later stud-

ied in detail in [24, 25]) the theory has a runaway behavior towards infinity (in a direction

parametrized by di-baryonic operators), at least in the large field regime. The absence

of a vacuum at finite values of the fields suggests that the dual supergravity background,

describing the UV behavior of the theory may not admit a smoothing of their naked singu-

larities. The prototypical case is the fractional brane of the complex cone over dP1, which

we study in next section.

3.2 Quiver gauge theories and the ISS proposal

We would like to consider the possible generalization of the ISS proposal to quiver gauge

theories on fractional branes. Notice that adding massive flavors to N = 2 SYM was shown

in [27] not to lead to SUSY breaking local meta-stable minima. Hence N = 2 fractional

branes are not appropriate candidates to implement the ISS proposal.

On the other hand, one can consider deformation branes leading to a set of decoupled

N = 1 SYM theories in the infrared, the simplest case being the fractional brane of the

conifold theory. Addition of flavors to these theories leads to a direct realization of the

ISS model, so the analysis in [27] goes through without modification. Thus, these are the

simplest examples of D-brane configurations realizing the ISS proposal in the D-brane.

Notice however that deformation branes whose quiver gauge theory reduces simply to

N = 1 SYM exist only for very non-generic cases, like vector-like theories.

Hence to understand the generic extension of the ISS proposal to quiver gauge theories

we have to consider the remaining cases. They correspond to more general deformation

fractional branes (leading to a set of nodes joined by arrows, like for instance the three-

node fractional brane of the dP3 theory studied in [19]), or DSB fractional branes. All

8An important and often unnoticed fact, which has been discussed in [22], is that geometries admitting

complex deformations may have DSB fractional branes, since generically the number of complex deforma-

tions is smaller than the number of independent fractional branes. An example is provided by the complex

cone over dP3, which admits two complex deformations and three independent fractional branes.
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these gauge theories contain massless bi-fundamentals, hence the relevant version of the

ISS proposal is that provided in section 2.3. For the ISS proposal to have a chance to work,

some necessary conditions are required. First, the theory after dualizing the node in the

free magnetic phase, should have SUSY breaking by the rank condition. As in sections 2.2,

2.3, this requires Nf,1 > Nc, equivalently Nf,0 < Nc. This condition is not satisfied by

deformation fractional branes of the kind we are considering (namely, with quivers given by

equal rank nodes joined by arrows). But it is satisfied for DSB branes, on which we center

henceforth. A second condition is the existence of suitable fields with cubic couplings to

the massless flavors of the node in the free magnetic phase. It is easy to verify that in all

known examples of DSB branes this condition is satisfied as well.

Hence DSB fractional branes are the natural setup to provide a generalization of the

ISS proposal for generic quiver gauge theories. In the remainder of the paper, we focus

on systems of DSB fractional branes, in the absence of D3-branes. These theories can be

regarded and studied on their own. Alternatively, one can consider them as the IR result of

a duality cascade, along which the D3-branes have disappeared. Some remarks about the

latter interpretation, and the related issue of gravity duals of the gauge theory phenomena

we discuss, are presented in section 6.

3.3 Review of the runaway for fractional branes in the cone over dP1

We now focus on DSB fractional branes. In this section we review the dynamics in the

absence of additional massive flavors, while in the next one we consider the possible ap-

pearance of meta-stable vacua once extra flavors are included. Both in this and coming

sections we center on the simplest situation of the fractional brane of the complex cone

over dP1. However, we expect that much of our discussion is valid for the general case,

and in fact our analysis is automatically valid for other examples of fractional branes on

obstructed geometries leading to the same quiver gauge theory (for instance, the fractional

branes of dP5 studied in [39]).

The gauge theory on D3-branes at a singularity given by a complex cone over dP1 was

determined in [38]. The gauge theory on a set of fractional branes has quiver shown in

figure 3. For convenience we have labeled the nodes such that the gauge factor associated

with a node with label k is SU(kM). Please note that this convention is different from

others in the literature.

The superpotential is given by

W = λ (X23X31Y12 − X23Y31X12 ) (3.1)

with obvious notation. Here and in what follows, traces over color indices are implicit. We

have introduced a dimensionless coupling λ, which is equal for both terms since they are

related by an SU(2) global symmetry.

This theory develops a non-perturbative superpotential which removes the supersym-

metric minimum [21 – 23]. Indeed, the theory has a runaway towards infinity9 [22], see [24]

for a detailed discussion. The runaway can be easily seen in both the SU(2M) and SU(3M)

9Notice that this statement requires some assumption about the Kähler potential for the dP1 theory.
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Figure 3: Quiver diagram for M fractional branes in the complex cone over dP1.

dominated regimes. The computation is very similar in both cases, and we now review the

situation in which the SU(3M) dynamics dominates. Since this gauge factor confines, we

construct the mesons

M21 = X23X31 ; M ′
21 = X23Y31 (3.2)

The SU(3M) gauge factor has 2M flavors, and leads to a non-perturbative ADS superpo-

tential. The full superpotential is

W = λ (M21Y12 − M ′
21X12 ) + M

(

Λ7M
3

detM

)

1
M

(3.3)

where M = (M21;M
′
21) is the mesonic 2M × 2M matrix.

For simplicity let us focus on the case M = 1, and denote

M21 =

(

A

C

)

; M ′
21 =

(

B

D

)

; Y12 = (a, b) ; X12 = (c, d) . (3.4)

We then have

W = λ ( aA + bC − cB − dD ) +
Λ7

3

AD − BC
. (3.5)

Using the equations of motion for A, B, C, D we obtain

W ' (λ2 Λ 7
3 detY )1/3 (3.6)

where Y =

(

a b

c d

)

=

(

Y12

X12

)

and we have dropped an unimportant numerical factor.

This superpotential leads to a runaway behavior10 for the fields X12, Y12. Notice that these

fields are not the mesons of the confining group, but rather the microscopic fields which

had cubic couplings with the original flavors.

Along this direction in field space, the additional gauge symmetry SU(2M) × SU(M)

is generically Higgssed by the vevs for Y, hence it does not lead to any modifications of

the above behavior.

10Again, notice that the existence of a runaway scalar potential implies certain assumptions for the Kähler

potential.
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The conclusion is that the theory has a runaway in the direction Y corresponding to

the singlets (of the strong dynamics gauge factor) with cubic couplings with the flavors

X32, X13, Y13. This behavior is reminiscent of that of the extended version of SQCD

studied in section 2.3. This analogy suggests that the dP1 theory may lead to meta-stable

minima upon the addition of extra massive flavors. In the next section we add massive

fundamental flavors to the theory, and indeed find the appearance of a meta-stable SUSY

breaking minimum.

4. Flavored dP1

Inspired by the ideas presented in previous sections, we consider the dP1 theory and explore

whether the addition of light massive flavors for node 3 can lead to a long-lived, meta-stable,

SUSY-breaking minimum.11 The String Theory construction leading to the additional

fundamental flavors is provided in section 5.

4.1 The classical flavored dP1 theory

In the String Theory construction, see next section, we discuss that light massive funda-

mental flavors can be introduced by adding D7-branes in the configuration, with the new

flavors arising from open strings stretched between D3 and D7-branes. Consistent sets of

D7-branes typically add the same number of flavors to all gauge factors in the quiver.

As discussed in section 5, there are several different choices of a consistent set of D7-

branes that can be added. These different choices lead in general to the same flavor content

for the different gauge factors (i.e. the same quiver), but differ in the interactions of the

latter with the D3-D3 states.12 Specifically, different D7-branes lead to D3-D7 (and D7-D3)

states with cubic coupling to different D3-D3 bifundamentals.

In order to keep the discussion concrete, we center on a specific set of D7-branes.

Other choices can be analyzed similarly. We consider three kinds of D7-branes, whose

D3-D7, D7-D3 states couple to the 33 fields X23, X31 and X12 respectively. In general

we will consider Nf,1 copies of this set of D7-branes, labeled by indices i, j, k, leading to

Nf,1 additional flavors for each D3-brane gauge factor. The resulting gauge theory can be

encoded in an extended quiver, with additional nodes representing gauge symmetries on

the D7-branes, and additional arrows representing the new flavors. The gauge fields on

the D7-brane worldvolume are higher-dimensional and thus appear on the four-dimensional

theory as flavor global symmetries. The extended quiver diagram for this gauge theory with

flavors is shown in figure 4, where D7-branes are represented as white nodes. Our notation

is that Qai, Q̃ia denote flavor fields associated with the ath D3-brane gauge factor and a

D7-brane in the ith set. Notice that each of the indices for the three kinds of D7-branes can

11As mentioned before, our analysis automatically generalizes to other examples of fractional branes on

obstructed geometries leading to the same quiver gauge theory (for instance, the fractional branes of dP5

studied in [39]).
12Notice that, following the abuse of language of appendix B, in this discussion what we mean by ‘D3-

brane’ is a gauge factor in the quiver theory. Such a gauge factor can arise from either regular or fractional

D3-branes (wrapped D5-branes).
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Figure 4: Extended quiver diagram for a dP1 theory with flavors.

be regarded as an independent SU(Nf,1) global symmetry group. However, mass terms to

be introduced later will break this symmetry, in general to a diagonal combination.

In addition to the superpotential (3.1), we have a superpotential for the new flavors

Wflav. = λ′ (Q3iQ̃i2X23 + Q2jQ̃j1X12 + Q1kQ̃k3X31 ) (4.1)

where for simplicity we assume the same coupling λ′ for all terms. We also introduce mass

terms

Wm = m3 Q3iQ̃k3δik + m2 Q2jQ̃i2δji + m1 Q1kQ̃j1δkj . (4.2)

Although we work with independent masses, the general results are valid in the simpler

situation of equal masses. Note that since the mass terms mix the global symmetries of

the different D7-branes, we stop using different indexes for them.

We would like to introduce a number Nf,1 of flavors such that the SU(3M) node is in

the free magnetic phase. This corresponds to Nc + 1 ≤ Nf < 3
2Nc. Since Nf = Nf,0 + Nf,1

with Nf,0 = 2M , we require

M + 1 ≤ Nf,1 <
5

2
M . (4.3)

A simple choice which works for all M , including M = 1, is Nf,1 = 2M . For the moment

we keep M and Nf,1 general.

Let us perform a Seiberg duality transformation on node 3. The dual gauge factor is

SU(N) with N = Nf,1 −M , and dynamical scale Λ. To get the matter content in the dual,

we replace the microscopic flavors Q3i, Q̃k3, X23, X31, Y31 by the dual flavors Q̃i3, Q3k,

X32, X13, Y13. We also have the mesons, related to the fields in the electric theory by

M21 =
1

Λ
X23X31; Nk1 =

1

Λ
Q̃k3X31

M ′
21 =

1

Λ
X23Y31; ;N ′

k1 =
1

Λ
Q̃k3Y31

N2i =
1

Λ
X23Q3i; Φki =

1

Λ
Q̃k3Q3i .

(4.4)
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Figure 5: Quiver diagram for the dP1 theory with flavors after dualization. Notice that the number

of colors for nodes 1,2 and 3 are M , 2M and Nf,1−M . Since D7-branes are mixed after dualization,

we represent them with a single white circle.

There is a cubic superpotential coupling the mesons and the dual flavors

Wmes. = h (M21X13X32 + M ′
21Y13X32 + N2iQ̃i3X32 +

+ Nk1X13Q3k + N ′
k1Y13Q3k + ΦkiQ̃i3Q3k ) (4.5)

where we have taken a common coupling h = Λ/Λ̂, with Λ̂ related to Λ, Λ3 by the analog

of (2.3).

In addition we have the classical superpotential, written in terms of the new fields

Wclas. = hµ0 (M21Y12 − M ′
21X12 ) + µ′ Q1kNk1 + µ′ N2iQ̃i2 +

− hµ 2 TrΦ + λ′ Q2jQ̃j1X12 + m2Q2iQ̃i2 + m1Q1iQ̃i1 (4.6)

where µ0 = λΛ, µ′ = λ′Λ, and µ 2 = −m3Λ̂. Although not manifest in our present notation,

some of the fields in this theory are close analogs of fields in the extended SQCD model in

section 2.3. We clarify this analogy in appendix A.3.

Some of the fields are massive, so we will proceed to integrating them out. However

recall that M21, M ′
21, X12, Y12 play a crucial role in the dynamics of the un-flavored dP1

theory. In fact, they are the analogs of Φ00 and Σ0 in the extension of SQCD with massless

and massive flavors. Hence it is convenient to keep them in the effective action until the

last stage of the analysis. Thus we integrate out Q̃i2, N2i, Q1k, Nk1.

The resulting superpotential is

W = hΦkiQ̃i3Q3k − hµ 2 tr Φ + hµ0 (M21Y12 − M ′
21X12 ) +

+ h (M21X13X32 + M ′
21Y13X32 + N ′

k1Y13Q3k ) +

+ λ′ Q2jQ̃j1X12 − h1 Q̃k1X13Q3k − h2 Q2iQ̃i3X32 (4.7)

where h1 = m1/µ
′, h2 = m2/µ

′. This is the theory we want to study. A depiction of its

quiver diagram is shown in figure 5.
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4.2 The local minimum

A detailed analysis of moduli and pseudomoduli in this theory and the computation of

pseudomoduli masses is given in appendix A.3. We present the results here. We first focus

on the most symmetric choice of couplings h = λ′ = h1 = h2 and µ = µ0. A discussion for

less symetric couplings can be found in appendix A.3. The moduli space of SUSY breaking

minima is parametrized as follows

Q̃i3 =

(

ϕ̃1

0

)

Q3i = (ϕ1; 0) Φ =

(

0 0

0 Φ1

)

Q̃k1 =

(

0

y

)

N ′
k1 =

(

0

z

)

Q2i =

(

0 x

0 x′

)

M ′
12 =

(

xy

x′y

)

(4.8)

where ϕ1, ϕ̃1 are N × N matrices subject to ϕ̃1ϕ1 = µ2 1N. The expectation values of all

other fields vanish.

We now focus on the point of maximal unbroken global symmetry Φ1 = x = x′ = y =

z = (θ + θ∗) = 0. Computing the one loop effective potential we find that this critical

point is a meta-stable minimum. Expanding around it, e.g. for the prototypical case of

Nf,1 = 2M , we get

〈V
(1)
eff 〉 = const. + |h4µ2|

(log 4 − 1)

16π2
M2 ×

×
(

2 |δΦ1|
2 + |δx|2 + |δx′|2 + |δy|2 + |δz|2 + |µ2|(θ + θ∗)2

)

+ · · · . (4.9)

The striking similarity between these results and those of the extended model in sec-

tion 2.3 is explained in appendix A.3. The longevity of this minimum is studied in sec-

tion 4.4.

Strictly speaking, the expectation value of Z12 is another pseudomodulus. This field

does not appear in the classical superpotential so it is flat both at tree level and one-loop.

Contrary to what happens for X0 in the model of section 2.2, motion along this direction

does not take us closer to the SUSY vacua so we do not consider it poses an obvious danger.

Nevertheless, it is in principle still possible that higher order corrections might render this

field unstable, even modifying some of our conclusions. This is a very interesting direction

for further research. In section 6 we comment on another field, the saxion, with similar

behavior.

An important final comment is that the existence of SUSY breaking local minima

depends on some basic patterns of the theory. For instance, as explained in section 3.2,

the fact that in the original theory we have Nf,0 < Nc, or the existence of singlets (of the

strongly coupled gauge factor) which couple to the flavors. These features are present in

general quiver gauge theories of fractional branes at obstructed geometries, namely DSB

fractional branes (in fact, it is easy to identify these features in all the examples of DSB

fractional branes in [22]). We therefore expect that our conclusions for the dP1 theory are

of general validity for this whole class.
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4.3 Behavior at large fields

We now explore whether, and if so where, this theory has a SUSY vacuum. As in previous

theories, we expect to recover in the region of large fields the behavior of the theory without

the extra flavors, determined in section 3.3, namely a runaway for X12, Y12.

In fact, for generic non-zero vevs of fields Φ, Q̃k1, Q2i, N ′
k1, M21 and M ′

21 the flavors

of gauge factor 3 are massive and can be integrated out, leaving a pure SU(N) SYM which

triggers a non-perturbative superpotential. In more detail, there are a number of fields

that contribute to the mass matrix of these flavors. Organizing the different fundamental

flavors in a row vector q with entries (Q3k;X32) and the anti-fundamental flavors in a

column vector q̃ = (Q̃i3;X13, Y13), the mass matrix is given by

m =

(

hΦki −h1Q̃k1 hN ′
k1

−h2Q2i hM21 hM ′
21

)

. (4.10)

This matrix can be used to integrate out massive fields. The low-energy effective

dynamics is pure SU(M) SYM with a dynamical scale Λ′ obtained from matching

Λ′ 3M =
detm

Λ5M−2Nf,1
(4.11)

where Λ is the Landau pole scale of the IR free SU(Nf,1 − M) theory with 2M + Nf,1

flavors.

The SU(Nf,1 −M) strong dynamics generates a non-perturbative superpotential. The

complete superpotential, after integrating out the massive flavors and taking into account

the non-perturbative dynamics, becomes

W = −hµ 2 tr Φ + hµ0 (M21Y12 − M ′
21X12 ) + λ′Q2jQ̃j1X12 +

+ (Nf,1 − M)

(

detm

Λ5M−2Nf,1

) 1
Nf,1−M

where one should recall that det m is a complicated function of the other fields in the

theory.

Actually, it is easy to identify a particular direction in field space where the dynamics

reduces to a runaway exactly like that of the un-flavored theory (3.3). Consider the equa-

tions of motion for Q2j , Q̃i1, N ′
k1. It is straightforward to see that they can be satisfied by

choosing Q2j = 0, Q̃i1 = 0, N ′
k1 = 0. Along this direction we have

detm = hNf,1+2M detΦ detM (4.12)

with M = (M21;M
′
21 ). So the effective theory along this solution is described by the

superpotential

W = −hµ 2 tr Φ + hµ0 (M21Y12 − M ′
21X12 ) +

+(Nf,1 − M)

(

hNf,1+2M detΦ detM

Λ5M−2Nf,1

)

1
Nf,1−M

.
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Using the equation of motion for Φ, we obtain

W = hµ0 (M21Y12 − M ′
21X12 ) − M

(

µ 2Nf,1 Λ5M−2Nf,1

h2M detM

)

1
M

. (4.13)

This is essentially identical to (3.3), which described the dynamics of the un-flavored dP1

theory.

4.4 Lifetime of meta-stable vacua

Comparing (2.22) and (4.13) and their derivations, we conclude that the discussion of

the potential barrier height and lifetime of the local minimum in the flavored dP1 theory

is completly isomorphic to the one for the extension of SQCD with massless flavors of

section 2.3.

We translate from the SQCD model to dP1 by identifying q1, q̃1 and Σ0 with Q3i, Q̃i3

and Y =

(

Y12

X12

)

, respectively. The numbers of flavors and colors are Nf,0 = Nf,1 = 2M

and N = M . Finally, µ and µ0 play the same role in both theories. Replacing in (2.32),

we get the bounce action

S =
1

|h|26/3

|αµ|
8

|ε|4
(4.14)

which is independent of M . The interpretation of this result is identical to the one in

section 2.3 and we conclude that the meta-stable vacua can be made parametrically long-

lived.

5. String theory construction

As already mentioned, the natural way to introduce fundamental flavors in D3-brane quiver

gauge theories is by adding D7-branes passing through the singular points [55]. This

introduces a new sector of open strings, stretching between the D3 and the D7-branes,

leading to such flavors. In addition, there is a sector of open strings stretching among the

D7-branes, but the corresponding fields have higher-dimensional support, and they behave

as external parameters from the viewpoint of the 4d gauge theory. In fact, due to the

existence of superpotential couplings X77′Q̃7′3Q37, they behave as masses for some of the

flavors. Hence, D7-branes are the natural setup to introduce massive flavors in the string

realization of quiver gauge theories.

To construct these configurations, we need efficient tools to classify interesting possibil-

ities of D7-branes wrapped on non-compact 4-cycles on toric singularities, and to compute

the open string 3-7 spectrum, and its interactions with the 3-3 sector. This study is carried

out in appendix B for a general toric singularity, and is applied in particular to the case of

D7-branes in dP1.

In general it is not consistent to introduce just one kind of D7-brane in the configura-

tion. D7-branes of the kind constructed in appendix B carry non-trivial charge under RR

4-form fields localized at the singularity (obtained from higher-dimensional RR p-forms

integrated over the compact homology cycles of the singularity), hence cancellation of
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Figure 6: Two possible extended quivers corresponding to consistent sets of D7-branes in the dP1

theory.

such RR tadpoles requires combinations of such branes to be introduced simultaneously.

Equivalently, the chiral spectrum of the 4d theory obtained from just one D7-brane has

non-abelian anomalies. Hence, only combinations of D7-branes leading to an anomaly-free

spectrum are allowed.13

For the case of the dP1 theory, we can use the different D7-branes described in ap-

pendix B.3 to obtain several ways to achieve this. Let us consider two simple classes of

solutions (although others are possible as well): a) the four nodes in the original quiver get

one fundamental flavor or b) only the three nodes in the final quiver get one fundamental

flavor.14 The different possibilities of D7-branes to achieve this kind of spectrum are

a) (Σ′′
BC or ΣAB or ΣCD) ⊕ (ΣDB or ΣCA) ⊕ ΣAD ⊕ (Σ′

DB or Σ′
CA)

b) (Σ′′
BC or ΣAB or ΣCD) ⊕ (ΣDB or ΣCA) ⊕ ΣBC

(5.1)

where ⊕ denotes superposition, and ‘or’ denotes different alternative possibilities. The

two classes are schematically shown in figure figure 6. The white circles represent the

D7-branes.

The above different possibilities lead, at the level of the quiver for the fractional branes,

to the same spectrum of flavors, but differ in the superpotential couplings involving the

latter.

For the sake of concreteness we will concentrate on one particular example, leading

to the gauge theory studied in previous section, others can be worked out similarly. The

configuration has 2M copies of the following set of D7-branes in class b, leading to 2M

13The equivalence of the statements is well-known for orbifolds [47, 46, 45]. It can be argued in general

as follows: Given a set of D7-branes, consider the net number of fundamentals minus antifundamentals

they introduce for a given D3-brane gauge group. This number corresponds to the charge of the D7-brane

system under the RR field associated with the compact homology class corresponding to that D3-brane

gauge factor. Since the homology classes of D3-brane gauge factors form a basis of the compact homology,

anomaly cancellation is equivalent to zero compact homology charge for the D7-brane system.
14Here by original and final quivers we refer to the quivers for only regular D3-branes or only fractional

branes respectively.

– 24 –



J
H
E
P
0
6
(
2
0
0
6
)
0
3
1

additional flavors for nodes 1, 2 and 3

ΣAB ⊕ ΣDB ⊕ ΣBC . (5.2)

The 33-37-73 terms in the superpotential are

Q̃i2 X23 Q3i ; Q̃j1 X12 Q2j ; Q̃k3 X31 Q1k (5.3)

where Q, Q̃ correspond to 37 and 73 states, respectively, namely fundamental and anti-

fundamental flavors. As mentioned, this configuration of D7-branes reproduces the gauge

theory studied in section 4, with the 4d matter content in figure 4 and the interactions

in (4.1).

A last point that requires further discussion is the introduction of flavor masses. As

already mentioned, they are controlled by vevs for fields in the D7-brane sector. Namely, the

configuration contains couplings of the form 77’-7’3-37, where 7 and 7′ denote different D7-

branes simultaneously present in the configuration. Since 77’ fields have higher-dimensional

support, their vevs are not dynamical fields from the 4d gauge theory viewpoint, but rather

external parameters. Hence, as in several other familiar situations, the moduli space of the

higher-dimensional theory provides the parameter space of the lower-dimensional one.

The higher-dimensional theory in this case has a complicated structure, since it in-

volves gauge fields in the 77 open sector, hence propagating over an 8d space, and charged

multiplets from 77’ open strings, in general propagating over 6d intersections. Without en-

tering into a detailed general discussion, it suffices our purposes to consider one particular

flat direction of this kind of theories. Namely, we consider the mesonic flat direction where

a set of fields Φ7172 , Φ7273 , . . ., Φ7k71 acquire the same vev. From the viewpoint of the 4d

gauge theory, this implies equal mass terms for all the 37i, 7i3 fields coupling to them.

To be more specific, let us consider our above example, namely the choice of D7-

branes given in (5.2). From the discussion in appendix B, such 77’sectors exist for pairs

of D7-branes with a common letter in their label. Thus, we see that in our example we

have a 77’ open string bi-fundamental for each pair of D7-branes. The above mentioned

mesonic flat direction corresponds to recombining the three intersecting cycles into a single

smooth one, which is at a finite distance (controlled by the D7-brane field vevs) from the

D3-branes at the singularity. This geometrical process can be modeled as follows. The

initial configuration contains D7-branes on three holomorphic 4-cycles which intersect over

a common holomorphic curve. In suitable local complex coordinates z1, z2, z3, the 4-cycles

can be chosen to be z1 = 0, z2 = 0, z1 + z2 = 0, with the holomorphic curve thus given

by z1 = z2 = 0 and spanned by z3. The complete D7-brane configuration is described by

the equation z1z2(z1 + z2) = 0. Then the above mentioned mesonic branch corresponds to

z1z2(z1 + z2) = ε. The branes have recombined since the 4-cycle is now irreducible, and all

D3-D7 open strings are massive because the 4-cycle does not pass through the origin.

6. Embedding into a duality cascade and breaking of baryonic U(1)

So far, we have studied in detail the 3+1 dimensional gauge theory that arises on fractional

D3-branes on a toric singularity in the absence of regular D3-branes. We have added
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Figure 7: a) Quiver diagram for flavored dP1 with M regular D3-branes and M D5-branes. b)

The theory on the baryonic branch.

fundamental flavors by means of D7-branes. As we have argued, it is completely licit

to study theories without regular D3-branes. On the other hand, these theories can be

regarded as describing the IR bottom of a duality cascade [16]. In other words, embedding

the theory in a duality cascade provides a specific UV completion. We now comment about

a subtle point that should be contemplated in this case.

The gauge theory for a set of D3-branes and fractional branes at a singularity is

not conformal and has a non-trivial RG flow. If the number of D3-branes N is much

larger than the number of fractional branes M , the theory can be regarded as a small

perturbation of the conformal theory. The general behavior is that, in analogy with the

conifold [16], the theory undergoes cascades of Seiberg dualities along which the effec-

tive number of D3-branes is reduced as one moves to the IR. This fact is mapped to a

radial dependence of the 5-form flux in the corresponding gravity dual. For explicit exam-

ples of cascades, see [16 – 20]. Interestingly, when a small number of D7-branes is added,

the effective number of fractional branes is also reduced along the RG flow (see for ex-

ample [42]). This behavior translates into a radial dependence of the 3-form flux in the

gravity dual [42]. It is straightforward to explicitly construct the duality cascade that ap-

pears when regular D3-branes are added to the flavored dP1 theory that we have focused

on in this paper. Since we are really interested in the bottom IR of it, we will skip doing

so.

The number of D3, D5 and D7-branes in the UV can be appropriately chosen such

that after a large number of dualizations we reach a point where the N = M as shown in

figure 7.15

This theory, without the fundamental flavors, has been already investigated in [23],

to which we refer the reader for details. We are interested in the situation in which the

15When doing a Seiberg duality transformation on a node, fundamental flavors of other nodes can appear

as Seiberg mesons combining bifundamental and (anti)fundamental fields as in section 4.1. Because of this,

it seems possible to have a cascade in which the quiver in figure 7.a is periodically repeated up to a change

in the numbers of D3 and D5-branes and possibly permutations of the nodes.
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dynamics of node 4 becomes dominant. Since our choice of D7-branes is such that node 4

has no fundamental flavors, the discussion in [23] applies without changes. Since node 4

has an equal number of colors and flavors it has a quantum modified moduli space that is

realized by adding the constraint detM−BB̃ = Λ8M
4 to the superpotential via a Lagrange

multiplier. The mesons are combinations of the fields that we have indicated in red in

figure 7. Thorough analysis shows that the mesonic branch is completely lifted in this

theory. Along the baryonic branch, we obtain the flavored dP1 theory of section 4 (shown

in figure 7.b).

But we have to be cautious at this point. The global U(1) baryonic symmetry of

present in the original theory is spontaneously broken by the vevs of dibaryonic operators.

As a result, the IR theory also contains a massless pseudo-scalar Goldstone boson (the

”axion”). By supersymmetry, the axion falls into a massless N = 1 chiral multiplet. Then,

there will also be a massless scalar (the ”saxion”) and a Weyl fermion (the ”axino”) . The

axion and the saxion are combined into the complex scalar of the chiral multiplet. The

above argument is the generalization of the analysis in [40] of the conifold cascade.

While the axion is a Goldstone boson and remains massless, the flatness of the saxion

can in principle be lifted by quantum corrections. At one-loop the saxion is decoupled

from the flavored dP1 sector and the computations of previous sections are not modified.

Namely, the saxion remains massless at one-loop. It is not clear whether the saxion becomes

unstable at higher loops or whether it can change any of our conclusions by coupling to

the flavored dP1 fields. We think that this is an interesting problem, important for the

possible realization of gravitational duals of our theories, and which hence deserves further

study.

7. Conclusions

In this paper we have studied the generalization of the ISS proposal to diverse gauge

theories with massless flavors, including quiver gauge theories on fractional branes. Inter-

estingly enough, the requirements of the ISS proposal (like SUSY breaking by the rank

condition mechanism) suggest that the natural generalization for quiver gauge theories oc-

curs for fractional branes in geometries with obstructed complex deformations. Although

our detailed analysis has centered on concrete examples, our results have laid the grounds

for more general analysis of this class of models.

Thus, it would be interesting to extend our computations to arbitrary number of extra

flavors and of colors / fractional branes. Also, it would be interesting to analyze the

introduction of flavors in other simple examples of DSB fractional branes (like the dP2 or

dP3 theories).

The generalization of the ISS proposal for fractional branes in obstructed geometries

leads effectively to a mechanism that allows to stay away from the runaway behavior of these

configurations. This is an important development, that improves the possible application

of these theories to dynamical SUSY breaking in String Theory model building (see [39]

for a partial attempt).
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It would be interesting to extend our discussion to other quiver gauge theories, for

instance those arising in the presence of orientifold planes, so as to exploit the ISS mech-

anism for SO and Sp gauge theories. If the appropriate conditions are met, it is possible

that addition of flavors can be used to escape the runaway behavior of models like that

in [56].

Despite the progress made in this paper, we consider that it is important to be cautious

about the fate of fields that remain decoupled from the rest of the theory and flat up to

one-loop, such as Z12 in section 4.2. This is an issue that needs to be understood in more

detail. In particular it is worthy to understand whether they can become unstable and, if

so, whether they modify any of our conclusions.

Another important open question concerns the realization of gravitational duals of

the gauge theories at SUSY breaking minima. The generalization of the ISS mechanism

to quiver gauge theories carried out in this paper is an important step in this direction.

However, several other questions remain open. One of them is the saxion flat direction

mentioned in section 6. Another important point is that the large number of flavor branes

requires the construction of supergravity solutions including their backreaction, which are

very involved even in simple examples (for some discussions see e.g. [41 – 44]).

We expect the fascinating physics of dynamical supersymmetry breaking and its real-

ization in String Theory to continue triggering progress in these and other directions.
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A. Computation of pseudomoduli masses

The one-loop correction to the vacuum energy due to integrating out classically massive

fields is

V
(1)
eff =

1

64π2
STrM4 log

M2

Λ2
≡

1

64π2

(

Tr m4
B log

m2
B

Λ2
− Tr m4

F log
m2

F

Λ2

)

(A.1)

where m2
B and m2

F are the classical squared masses for bosons and fermions as functions

of the pseudomoduli vevs.16

In a theory of n chiral superfields Qa with canonical classical Kähler potential, Kcal =

Q†
aQa and superpotential W (Qa), the scalar and fermion mass-squared matrices are gi-

16The ultraviolet cutoff Λ can be absorbed in the renormalization of the couplings that appear in the

tree-level vacuum energy.
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ven by

m2
0 =

(

W †acWcb W †abcWc

WabcW
†c WacW

†cb

)

m2
1/2 =

(

W †acWcb 0

0 WacW
†cb

)

(A.2)

where Wc ≡ ∂W/∂Qc, etc. The dimension of m2
0 and m2

1/2 is 2n × 2n. Supersymmetry

breaking is encoded in the off-diagonal blocks of these matrices.

Typically, the effective potential for the pseudomoduli (A.1) generates masses for pseu-

domoduli when expanded around its critical points. These masses can be positive (the

corresponding pseudomodulus is a stable direction) or negative (unstable direction). Some-

times, pseudomoduli remain massless at one-loop. Since they are not Goldstone bosons,

their masses are not protected from perturbative corrections and it is therefore expected

that their flatness is lifted at some higher order.

A.1 Massless flavored SQCD

The superpotential for this theory is

W = h Tr q0Φ00q̃0 + Tr q0Φ01q̃1 + Tr q1Φ10q̃0 + Tr q1Φ11q̃1 − hµ2 Tr Φ11 . (A.3)

The F-term for Φ11 breaks supersymmetry due to the rank condition. The classical

minima of this potential are obtained by saturating this F-term as much as possible. There

is a moduli space of field configurations satisfying this with Vmin = (Nf,1 − N)|h2µ4|. In

particular, for any choice of vevs for q1, q̃1 of the form

q1 = ( ϕ1 ; 0 ) q̃1 =

(

ϕ̃1

0

)

(A.4)

with ϕ̃1ϕ1 = µ21N. Here ϕ̃1, ϕ1 are N × N blocks.

In order to make the F-terms of Φ01, Φ10 vanish, q0 and q̃0 must vanish. In addition,

to make the F-terms of q1 and q̃1 vanish, the vevs of Φ10, Φ01, Φ11 must be of the form

Φ01 = ( 0 ; Y ) Φ10 =

(

0

Ỹ

)

Φ11 =

(

0 0

0X1

)

(A.5)

where Y , Ỹ , X1 are Nf,0 × (Nf,1 − N), (Nf,1 − N) × Nf,0 and (Nf,1 − N) × (Nf,1 − N)

blocks, respectively. Finally, the vev for Φ00 = X0 is arbitrary.

We can use SU(Nf,0) global symmetry transformations to make X0 diagonal. Further-

more, X1 can be diagonalized by means of SU(N − Nf,1) transformations.

We now expand fields in fluctuations around arbitrary expectation values of the the

pseudomoduli

q0 = δρ0 q̃0 = δρ̃0 q1 = ( µeθ1N + δχ ; δρ1 ) q̃1 =

(

µe−θ1N + δχ̃

δρ̃1

)

Φ00 = X0 + δΦ0 Φ01 = ( δW ; Y + δY )

Φ1,0 =

(

δW̃

Ỹ + δỸ

)

Φ11 =

(

δY1 δZ1

δZ̃1 X11Nf−N + δΦ1

)

.

(A.6)
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We must now expand the classical superpotential to quadratic order in the fluctuations,

except for the terms involving δΦ1, for which we must allow cubic terms. The reason is that

δΦ1 is the only field with non-vanishing F-term in the vacuum, so it leads to a contribution

to the scalar mass matrix involving third derivatives of the terms in which δΦ1 appears.

The result is

W = h Tr

[

δρ1 (X1 + δΦ1 ) δρ̃1 − µ2 (X1 + δΦ1 ) + µeθδZ1δρ̃1 + µe−θδρ1δZ̃1 +

+ µeθδY1δχ̃1 + µe−θδχ1δỸ1 + µe−θδρ0δW + µeθδW̃ δρ̃0 +

+ δρ0 X0 δρ̃0 + δρ0 Y δρ̃1 + δρ1 Ỹ δρ̃0

]

. (A.7)

As in SQCD with massive flavors [27], off diagonal elements of δΦ1 do not enter in the

mass matrix. The same thing happens for δΦ0. This is natural since they are Goldstone

bosons of the broken global symmetries, which obviously remain exactly massless (to any

order).

The fields δY1, δχ1, δχ̃1 are decoupled from the SUSY breaking sector (i.e. from fields

with a non-supersymmetric mass matrix). As a result, they have a supersymmetric mass

matrix and do not contribute to the supertrace.

The main difference with respect to the case studied in [27] is given by the generically

rectangular matrices Y and Ỹ coupling fluctuations. Nevertheless, in analogy with [27],

one can use symmetries of the system to show that the lagrangian of pseumoduli masses is

given by a sum of terms tr M †M , where M denotes the different matrix pseudomoduli (see

(A.9) later). The coefficients of such terms can be computed by taking a simple ansatz for

the corresponding pseudomodulus. That is, we take Y to be formed by a diagonal block

diag(Y1, . . . , YÑ ), where Ñ = min(Nf,0, Nf,1 − N), and an appropriately located block of

zeroes (i.e. either additional rows or columns) to complete the Nf,0×(Nf,1−N) dimensions.

We take the matrix Ỹ to have an analogous block-diagonal form.

Now, the interpretation of (A.7) is clear, relating it to O’Raighfertaigh-like (OR) mod-

els of the kind used in [27]. For (Nf,1 −N) < Nf,0 it corresponds to the sum of (Nf,1 −N)

copies of an OR model involving all terms in (A.7). For Nf,0 < (Nf,1 − N) we have Nf,0

copies of an OR model with all the terms in (A.7), plus (Nf,1 −N −Nf,0) copies of an OR

model in which all the terms in (A.7) except the last two are present (this latter OR model

effectively corresponds to that used in [27]).
We then compute m2

0 and m2
1/2 using (A.2) and plug the result into (A.1) to obtain

the one-loop effective potential. The full expression for V
(1)
eff is very complicated. For

illustrative purposes we present it for fixed values Y = Ỹ = θ = 0

V
(1)
eff |Y,Ỹ ,θ=0(X1, X0) =

h4N(Nf−N)

128π2

h

4(µ2 + X2
1 )2 log

“

h2(µ2+X2

1
)

Λ

”

+
“

3µ2 + X2
1 −

p

µ4 + 6µ2X2
1 + X4

1

”2

log

„

h2
ş
3µ2+X2

1
−
√

µ4+6µ2X2

1
+X4

1

ť

2Λ

«

+
“

3µ2 + X2
1 +

p

µ4 + 6µ2X2
1 + X4

1

”2

log

„

h2
ş
3µ2+X2

1
+
√

µ4+6µ2X2
1
+X4

1

ť

2Λ

«

+ 2
“

2µ2 + X1

“

X1 −
p

4µ2 + X2
1

””2

log

„

h2
ş
2µ2+X1

ş
X1−

√
4µ2+X2

1

ťť

2Λ

«

− 2
“

2µ2 + X1

“

X1 +
p

4µ2 + X2
1

””2

log

„

h2
ş
2µ2+X1

ş
X1+

√
4µ2+X2

1

ťť

2Λ

«–

(A.8)
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Figure 8: The one-loop effective potential in arbitrary units as a function of Φ0 for Y 6= 0 and

Φ1 = Ỹ = θ = 0.

which does not depend on X0 at all. In order to keep the above expression compact, we

have omitted absolute values.

The full one-loop effective potential has a critical point at the vacua of maximal un-

broken global symmetry, which correspond to X0 = X1 = Y = Ỹ = 0 and ϕ1 = ϕ̃1 = µ

(up to unbroken flavor rotations).

Expanding the effective potential around these pseudomoduli vevs, we obtain

〈V
(1)
eff 〉 = const. + |h4µ2|

(log 4 − 1)

16π2
N ×

×
[

(Nf − N)
(

2 |δΦ1|
2 + |µ2|(θ + θ∗)2

)

+ |δY |2 + |δỸ |2
]

+ . . . (A.9)

where |δY |2 and |δỸ |2 should be understood as the squared norms of Ñ -dimensional com-

plex vectors. Taking the non-trivial diagonal blocks of Y and Ỹ to be proportional to 1
Ñ

,

(A.9) simplifies to

〈V
(1)
eff 〉 = const. + |h4µ2|

(log 4 − 1)

16π2
N ×

×
[

(Nf − N)
(

2 |δΦ1|
2 + |µ2|(θ + θ∗)2

)

+ Ñ
(

|δY |2 + |δỸ |2
)]

+ · · · . (A.10)

From A.9, we see that δΦ0 remains massless at one-loop, i.e. X0 remains a flat direc-

tion. An heuristic, although not rigorous, way to understand why this happens is to look

at (A.7) and notice that for Y = Ỹ = 0, X0 decouples from the SUSY breaking sector and

thus it does not contribute to the supertrace, disappearing from V
(1)
eff . Outside the critical

point, for Y, Ỹ 6= 0, X0 couples to the SUSY breaking sector and appears in the effective

potential, but it becomes an unstable direction as shown in figure 8.

In principle, it is still possible that δΦ0 becomes massive at higher loops, producing a

meta-stable minimum (probably with a much smaller potential barrier) at small expectation

values for the fields. We do not consider this possibility but explore a different direction in

section 2.3. The most economical way to lift this flat direction classically is by considering

a modified toy model, with the addition to the electric theory of a neutral field Σ0 with

cubic coupling to massless flavors.
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A.2 Extended model

The pseudomoduli in this case are identical to those in (A.4) and (A.5) with the exception

that the coupling (2.20) ‘freezes’ the expectation value of X0 to zero in the magnetic

theory as discussed in section 2.3. This occurs already at the classical level so X0 is not a

pseudomoduli in this theory.

Repeating the derivation in the previous section, the expansion of the superpotential

to second order in fluctuations (and to third order in terms involving δΦ1 which has a

non-vanishing F-term) is

W = h Tr

[

δρ1 (X1 + δΦ1 ) δρ̃1 − µ2 (X1 + δΦ1 ) + µeθδZ1δρ̃1 + µe−θδρ1δZ̃1 +

+ µe−θδρ0δW + µeθδW̃ δρ̃0 + δρ0 Y δρ̃1 + δρ1 Ỹ δρ̃0

]

(A.11)

where we have already dropped fields that do not couple to the SUSY breaking sector. The

effective potential has a critical point at the vacua of maximal unbroken global symmetry

given, up to unbroken flavor rotations, by X1 = Y = Ỹ = 0 and ϕ1 = ϕ̃1 = µ.

As in the previous section, we can split the lagrangian for the fluctuations into a sum

of simple OR modes.

Expanding V
(1)
eff around these vacua we obtain

〈V
(1)
eff 〉 = const. + |h4µ2|

(log 4 − 1)

16π2
N ×

×
[

(Nf − N)
(

2 |δΦ1|
2 + |µ2|(θ + θ∗)2

)

+ |δY |2 + |δỸ |2
]

+ · · · (A.12)

i.e. all pseudomoduli are lifted at one-loop and we have a SUSY breaking, meta-stable

minimum at X1 = Y = Ỹ = 0 and ϕ1 = ϕ̃1 = µ. Once again, taking the diagonal blocks

of Y and Ỹ to be proportional to 1
Ñ

, (A.12) reduces to

〈V
(1)
eff 〉 = const. + |h4µ2|

(log 4 − 1)

16π2
N ×

×
[

(Nf − N)
(

2 |δΦ1|
2 + |µ2|(θ + θ∗)2

)

+ Ñ
(

|δY |2 + |δỸ |2
)]

+ · · · . (A.13)

A.3 Flavored dP1

The quiver diagram for this model is shown in figure 5. The superpotential is given by

(4.7) and corresponds to

W = hΦkiQ̃i3Q3k − hµ 2 tr Φ + hµ0 (M21Y12 − M ′
21X12 ) +

+h (M21X13X32 + M ′
21Y13X32 + N ′

k1Y13Q3k ) +

+λ′ Q2jQ̃j1X12 − h1 Q̃k1X13Q3k − h2 Q2iQ̃i3X32 . (A.14)

The first step is to parametrize the SUSY breaking vacua and to identify the pseudo-

moduli. Given the complicated structure of the theory this task is slightly more involved

than in previous examples. There are 15 chiral fields in this theory. We simply impose the

minimization of their F-terms (actually all F-terms, except for the one of Φ, vanish) in a

convenient order.
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We start with
∂W

∂Φ
= 0 → Q̃i3Q3k = µ2 1Nf,1

. (A.15)

This cannot be saturated and breaks SUSY by the rank condition. This F-term contribution

is minimized by choosing

Q̃i3 =

(

ϕ̃1

0

)

; Q3i = (ϕ1; 0) (A.16)

where ϕ1, ϕ̃1 are N × N matrices and ϕ̃1ϕ1 = µ2 1N.

Now we impose

∂Y12W = 0 → M21 = 0

∂N ′
k1

W = 0 → Y13Q3k = 0 → Y13 = 0

∂M ′
21

W = 0 → Y13X32 − µ0X12 = 0 → X12 = 0 (A.17)

So far, the results are independent of the presence of couplings h1 and h2. From now

on, we make explicit use of them (in their absence, vevs are less constrained, leading to

more pseudomoduli). Let us continue by imposing

∂Q̃i1
W = 0 → λ′X12Q2i − h1X13Q3i = 0 → X13 = 0

∂Q2i
W = 0 → λ′Q̃i1X12 − h2Q̃i3X32 = 0 → X32 = 0

∂M21W = 0 → X13X32 + µ0Y12 = 0 → Y12 = 0 . (A.18)

With this, we are ready to get the expression for Φ. We have

∂Q̃i3
W = 0 → hQ3kΦki − h2X32Q2i = 0 → Q3kΦki = 0

∂Q3k
W = 0 → hΦkiQ̃i3 − h1Q̃k1X13 + N ′

k1Y13 = 0 → ΦkiQ̃i3 = 0 .(A.19)

From these two conditions Φ has the structure

Φ =

(

0 0

0 Φ1

)

. (A.20)

Notice that the fact that h1 and h2 are non-vanishing is crucial for getting this. Continuing,

we have

∂X13W = 0 → hX32M21 − h1Q3kQ̃k1 = 0 → Q̃k1 =

(

0

y

)

∂Y13W = 0 → X32M
′
21 + Q3kN

′
k1 = 0 → N ′

k1 =

(

0

z

)

∂X32W = 0 → hM21X13 + hM ′
21Y13 − h2Q2iQ̃i3 = 0 → Q2i =

(

0 x

0 x′

)

∂X12W = 0 → −hµ0M
′
21 + λ′Q2jQ̃j1 = 0 → M ′

12 =
λ′

hµ0

(

xy

x′y

)

. (A.21)
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So far we have minimized 14 of the F-term contributions. We are only left with Z12

which does not appear in the superpotential in (A.17) and thus its contribution trivially

vanishes.

Notice that only the vev of M ′
12 depends on superpotential couplings. Furthermore,

none of the vevs depend on h1 or h2. These facts will be important when studying the

effective potential for general values of the couplings.
Expanding the superpotential to quadratic order in fluctuations, except for terms in-

volving δΦ11 (the only field with a non-zero F-term in the vacuum) which have to be
expanded to cubic order, we obtain

W = Tr
h

−hµ2Φ1 + hΦ1δQ3,2δQ̃3,2 + hµeθδY13δN1,1 − h1µeθδX13δQ̃1,1 − h1yδX13δQ3,2 + hzδY13δQ3,2

+ xyλ′

µ0
δY13δX32,1 − h2µe−θδQ2,11δX32,1 − h2xδQ̃3,2δX32,1 + x′yλ′

µ0
δY13δX32,2 − h2µe−θδQ2,21δX32,2

− h2x
′δQ̃3,2δX32,2 + hµeθδQ̃3,2δΦ01 + hµe−θδQ3,2δΦ10 − hµ2δΦ11 + hδQ3,2δQ̃3,2δΦ11

i

(A.22)

where we have only kept those terms that couple to supersymmetry breaking fields and thus

give a non-vanishing contribution to the supertrace when integrated out. We have used

the obvious notation for fluctuations, including additional subindices to indicate matrix

sub-blocks (that reduce to matrix entries for M = 1). In analogy with (A.6), θ is defined

by

Q̃i3 =

(

µeθ1N + δQ̃3,1

Q̃3,2

)

; Q3i = (µe−θ1N + δQ3,1; δQ3,2) . (A.23)

Let us consider in a little more detail those fluctuations that are absent from (A.22)

because they have a supersymmetric matrix. Fluctuations of classically massive fields δM21,

δM ′
21, δX12 and δY12 are naturally expected not to contribute to the effective potential.

Also δQ3,1, δQ̃3,1 and δΦ11 do not contribute, in complete analogy with similar fields in

SUSY QCD with massive flavors. The only new ingredient is the fact that δQ2,12 and

δQ2,22 disappear.

Until now, we have kept our discussion completely general. In order to compute the

effective potential we have to diagonalize the mass matrices (A.2). Doing this analytically

is intractable for generic values of the superpotential couplings. We now focus on the most

symmetric choice of couplings, i.e. h = λ′ = h1 = h2 and µ = µ0.

As in the previous examples, the lagrangian for the fluctuations splits into a sum of

OR models. We now focus in the case Nf,1 = 2M . Since Nf,0 = 2M , this implies N = M .

The effective potential has a minimum at Φ1 = x = x′ = y = z = (θ + θ∗) = 0. Expanding

around it, we have

〈V
(1)
eff 〉 = const. + |h4µ2|

(log 4 − 1)

16π2
M2 ×

×
(

2 |δΦ1|
2 + |δx|2 + |δx′|2 + |δy|2 + |δz|2 + |µ2|(θ + θ∗)2

)

+ · · · . (A.24)

This result is remarkably similar to the to the one for the extension of SQCD with

massless flavors of Appendix A.2. This is due to the close similarity between (A.11) and
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(A.22). In fact, it is possible to identify analogous fields in both models

Extended massless SQCD Flavored dP1

Φ00 M21,M
′
21

Φ01 N ′
i1 similar mesons, Ni1, become massive

Φ10 N2i they are massive

Φ11 Φ

(A.25)

The analogue of Φ10 in flavored dP1 are the flavors N2i coming out of node 2. These

fields are massive and do not appear in the final theory. Despite this, Q2 takes a vev of

similar form to that of Φ10. Similarly, Q̃1 is not analogous to Φ01 but its vevs have the

same structure.

Extending the analysis to different couplings. We have just considered a very sym-

metric situation in which all dimensionless couplings in the superpotential are identical.

It is natural to wonder whether meta-stable minima still exist in the case in which the

couplings are different. In order to study this question we consider the case in which

h1 = h2 = λ′, but we allow h1 to be different from h. In this case we cannot treat the

problem analytically anymore and we proceed numerically.

As before, V
(1)
eff has a critical point for Φ1 = x = x′ = y = z = (θ+θ∗) = 0. Expanding

around it we conclude that the mass of the x, x′ and θ + θ∗ fluctuations depend only on h

while masses of y and z fluctuations seem to be equal and depend on both h and h1. Near

the critical point, we have17

〈V
(1)
eff 〉 = const. + |h4µ2|

(log 4 − 1)

16π2

(

2 |δΦ1|
2 + |δx|2 + |δx′|2 + |µ2|(θ + θ∗)2

)

+

+m2
y |δy|2 + m2

z |δz|2 + · · · . (A.26)

Figure 9 shows the behavior of m2
y = m2

z as a function of h1/h.

We can consider more involved situations in which all couplings are different. For

small variations of the couplings, the existence of a meta-stable minimum is guaranteed.

This follows because the moduli space of the theory for equal couplings is compact, and

the small variation of couplings can be regarded as a small potential on it. We have

moreover performed a numerical analysis in some directions in coupling space. Our analysis

seems to indicate that the existence of meta-stable, SUSY breaking minima where all

pseudomoduli get positive masses at one-loop and are consequently lifted is robust with

respect to variations of the couplings.

B. Flavor D7-branes for D3-branes at singularities from dimers

The introduction of flavors in gauge theories realized on systems of D3-branes at singular-

ities is naturally achieved by incorporating D7-branes. Such systems have been considered

17Although we have computed the effective potential numerically for specific values of h, h1 and µ, we

provide an analytical expression in (A.26). With our analysis, we can only say that this expression is correct

to a high numerical accuracy.
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Figure 9: The value of m2

y/m2

x as a function of h1/h. We indicate the point of symmetric couplings

h1 = h.

in geometries related to flat space or orbifolds in e.g. [53, 54, 51, 41, 55]. However, for

D3-branes at non-orbifold singularities, it is non-trivial to obtain the D3-D7 open string

spectrum and interactions (see e.g. [51, 42] for discussion in some simple examples). In this

appendix we introduce techniques to construct and characterize a simple class of D7-branes

wrapped on holomorphic 4-cycles in systems of D3-branes at general toric Calabi-Yau three-

fold singularities. Our characterization is based on the description of these systems in terms

of dimer diagrams (or brane tilings) [30 – 34]. More specifically, our main tool is the Rie-

mann surface Σ in the mirror configuration, studied in [33] (and whose skeleton is the web

diagram).

Before entering the discussion, a comment is in order. In this appendix (and pieces of

the main text using its results), each gauge factor arising on the D3-brane gauge theory is

loosely referred to as a ‘D3-brane’.

B.1 General lessons from dP0

Let us start with a heuristic argument. In systems of D3-branes at singularities, super-

symmetric flavor D7-branes wrap holomorphic non-compact 4-cycles. A set of these (the

so-called toric divisors) are associated with external points in the toric diagram, or non-

compact faces in web diagrams, spanned by adjacent external legs. To be concrete, the web

diagram of the complex cone over dP0, namely the C
3/Z3 orbifold singularity, is shown in

figure 10, along with the three basic non-compact 4-cycles. They correspond to the three

4-cycles defined by zi = 0, i = 1, 2, 3, where zi denote complex coordinates of C
3, which

descend to the orbifold space.

This orbifold example already shows a crucial subtlety. Starting with D7-branes

wrapped on a 4-cycle e.g. z1 = 0 of the parent C
3, there are three possible choices of

Chan-Paton factor in quotienting by Z3, given by the three roots of unity. This shows

that for each 4-cycle there are three different discrete choices that define a D7-brane in

the orbifold geometry. In fact, different choices of Chan-Paton factors lead to different

D3-D7 spectra, etc. Hence it is important to characterize this subtle feature already in
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Figure 10: Three basic 4-cycles in the dP0 theory.
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Figure 11: Dimer and zig-zag paths in the dP0 theory.

the quotient space. By doing so we will be able to generalize to other examples, including

non-orbifold ones, where the notion of Chan-Paton factor is actually not so familiar.

The structure of D7-branes, including discrete multiplicities, turns out to be very

simple in the mirror geometry. Recall that in the mirror geometry a prominent role is

played by the (punctured) Riemann surface Σ whose skeleton is the web diagram. This

Riemann surface can be obtained by considering the zig-zag paths of the dimer diagram,

which provide a tiling of Σ where faces correspond to zig-zag paths, and their adjacency

can be read from the dimer diagram. In figure 11 we give the dimer diagram and zig-zag

paths for the dP0 theory. The mirror Riemann surface Σ is shown in figure 12.

In this mirror picture, the different D3-brane gauge factors arise from D6-branes on

compact 3-cycles, which are encoded in non-trivial compact 1-cycles in Σ. Amusingly, these

are zig-zag paths of the tiling of Σ. Moreover, the bifundamental chiral multiplets arise

from intersections of these 3-cycles, and their superpotential couplings arise from disks

bounded by the 1-cycles. The 1-cycles associated with the three D3-brane gauge factors

are shown in figure 14. Notice the geometric Z3 symmetry (mirror to the quantum Z3

symmetry of the orbifold) exchanging them. It is easy to check the intersection numbers of
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the topology of Σ is that of a (punctured) genus 1 Riemann surface. Punctures are located in the

middle of the faces in the picture. The fact that the tiling of Σ is similar to the original brane tiling

is a property of del Pezzo theories, and not valid for a general singularity.
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Figure 13: Quiver for the dP0 theory.
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Figure 14: The 1-cycles for the three D3-brane gauge factors in the dP0 theory.

the 1-cycles and recover the quiver diagram for the dP0 theory, shown in figure 13. Also,

the cubic superpotential couplings can be obtained from triangles bounded by pieces of

1-cycles in Σ, see figure 15.

It is now easy to describe the D7-branes in this picture. In the mirror geometry,

they correspond to D6-branes wrapped on non-compact 3-cycles. These correspond to

non-compact 1-cycles in Σ, which come from infinity at one puncture and go to infinity
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Figure 15: Disks corresponding to the cubic couplings in the superpotential of the dP0 theory.
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Figure 16: Intuitive picture of the 1-cycles in Σ associated with D3 and D7-branes.

at another puncture 18 (so in the web diagram they are naturally associated with non-

compact faces spanned by the corresponding legs). An intuitive picture of the 1-cycles in

Σ associated with D3 and D7-branes is shown in figure 16.

The origin of the Chan-Paton multiplicity is clear in this description. As one can see in

figure 12, for each pair of punctures there are three possible paths that the associated D7-

brane 1-cycle can take. These are explicitly shown in figure 17. For fixed pair of punctures,

the different 1-cycles correspond to different possible supersymmetric D7-branes wrapped

on the corresponding 4-cycle. Namely, to different choices of Chan-Paton factors. Indeed,

for a fixed pair of punctured the different 1-cycles are related by the Z3 geometric symmetry,

mirror to the Z3 quantum symmetry of the orbifold theory, in agreement with the Chan-

Paton interpretation. To make contact with standard orbifold notation, 1-cycles of type

BA, AC, CB correspond to D7-branes wrapped on the 4-cycles zi = 0, for i = 1, 2, 3

respectively (often denoted D71, D72, D73 in the orbifold/orientifold literature). On the

other hand, the choices a, b, c correspond to different choices of the Chan-Paton action.

It is easy to obtain the 3-7 spectrum of chiral multiplets by simply computing the

intersection numbers of the 1-cycles associated with the D7-brane of interest, and the 1-

18The complete 3-cycle, along with its supersymmetry, are discussed later on.
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The segments represent 1-cycles stretched between the punctures located at the position of the face

labels.

1

23

a

b c

Figure 18: Extended quiver for the dP0 theory with D7-branes.

cycles associated with the gauge factors of the D3-branes. This gives rise to the extended

quivers in figure 18. This agrees with the spectra that one can find using techniques of

D-branes at orbifolds and Chan-Paton factors.

Notice that different D7-branes on the same 4-cycle but with different choice of Chan-

Paton factors lead to different D3-D7 spectrum. Also notice that different D7’s can give

rise to the same spectrum of 3-7 chiral multiplets. However, different possibilities give rise

to different superpotential interactions of type 33-37-73. These interactions are easily com-

puted by considering disks bounded by two D3-branes and one D7-brane, shown in figure 19.

These are also in agreement with results from orbifold computations (they correspond to

the interactions usually denoted (33)i-37i-7i3, where (33)i denotes a bi-fundamental arising

from the orbifold projection of the chiral multiplet parametrizing motion in the complex

direction zi in the parent N = 4 theory of D3-branes in flat space).

Recall that each edge in the tiling of Σ corresponds to a bi-fundamental multiplet in

the 33 sector. Hence our example illustrates that for each such bi-fundamental there is a

possible supersymmetric D7-brane, given by the 1-cycle crossing the edge. Moreover, a little

thought on the above pictures reveals that a bi-fundamental Φij = ( i, j) is associated

with a D7-brane whose 73 and 37 sectors transform as i and j respectively, and that

there is a 33-37-73 interaction between the three fields. These features follow from the

dimer construction and are valid for general singularities.
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Figure 19: Disks corresponding to 33-37-73 interactions in the dP0 theory.

Finally, in the presence of several D7-branes, there are in general non-trivial D7-D7’

open string sectors. These are higher-dimensional fields, but are relevant for the 4d theory

due the existence of 37-77’-7’3 couplings. Namely, vevs for 77’ fields appear as mass terms

for flavors of the D3-brane gauge theories.

The 77’ fields and their interactions, can be determined using orbifold techniques. Con-

cretely, two D7-branes on different 4-cycles zi = 0, zj = 0, (denoted D7i-D7j) and with dif-

ferent Chan-Paton actions lead to one six-dimensional 7i-7j field (propagating on the extra

zi = zj = 0 complex plane). The dimensionality of the D7-branes intersection is determined

by the number of common punctures along which the corresponding non-compact 1-cycles

go to infinity. At the origin, one of the 4d N = 1 chiral multiplets in this 6d hypermultiplet

has a superpotential coupling to the flavors in the D3-D7i and D3-D7j sectors. Also, two

D7-branes on the same 4-cycle zi = 0 (denoted D7i, D7i’) but different choices of Chan-

Paton action lead to one eight-dimensional field. At the origin one 4d N = 1 chiral multiplet

couples to the flavors in the D3-D7i and D3-D7i’ sectors. Finally, pairs of D7-branes with

same choice of Chan-Paton action lead to higher-dimensional fields, but which do not couple

to D3-D7 states (the orbifold projection forces these D7-brane fields to vanish at the origin).

In contrast with 33 and 37 states, 77’ states are not perfectly characterized in the

dimer diagram. This is related to the fact that they have non-compact support, hence they

cannot be properly described in terms of intersections of 1-cycles (which lead to essentially

four-dimensional fields). Heuristically, one could associate such fields to ‘intersections’

of D7-brane 1-cycles with common punctures. Using this picture, some 37i − 7i7j − 7j3

interactions can be pictured in terms of disks as shown in figure 20. However, notice

that there are additional interactions that cannot visualized in this way. For instance, the

couplings 37i − 7i7
′
i − 7′i3 exist, despite the fact that they do not correspond to disks in Σ

(see figure 21). Hence, interactions of 77′ states with the 4d theory cannot be directly read

out from the dimer diagram.

As mentioned, vevs for 77’ states correspond to mass terms for certain D3-D7 open

strings. Sketchily, the string interpretation of this fact is that the 4-cycles associated with

the D7 and the D7’ recombine into a 4-cycle which does not pass through the singular

point, but at some distance from it. A prototypical example (e.g. in C
3) is to recombine

D7-branes along z1 = 0 and along z2 = 0 (i.e. z1z2 = 0) to D7-branes along z1z2 = ε. This

gives a non-trivial mass to the 37 and 7’3 open strings, which have a minimal non-zero

stretching related to ε.
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Figure 20: Examples of interactions 37i − 7i7j − 7j3 in the dP0 theory.
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Figure 21: The non-trivial interaction 37i − 7i7
′
i − 7′i3, which can be shown to exist using orbifold

techniques, is not manifest as a disk in the mirror Riemann surface.

As a final piece of information, we would like to provide a more detailed description of

the 3-cycles in the mirror geometry corresponding to the D7-branes, and to discuss their

supersymmetry properties. Recall that the mirror geometry is given as a Σ × C
∗ fibration

over a complex plane C. Let z be a (uniform) complex coordinate in our genus 1 Riemann

surface, and let the C
∗ fibration be described by xy = w, where w is the complex coordinate

on the C base. The holomorphic 3-form of the geometry is

Ω = dw dz
dx

x
(B.1)

D3-branes are mirror to D6-branes on 3-cycles which span the S1 direction in C
∗ (given

by the orbit of x → ei tx, y → e−i ty), times a segment in C (locally of the form w = eiθr),

times a 1-cycle in Σ (locally of the form z = e−iθs. Here r, s, t are local coordinates on

the 3-cycle. The 3-cycle is supersymmetric since it is special lagrangian with respect to

e−iπ/2Ω (namely they are calibrated by Im Ω). Indeed

Ω|D3 = idr ds dt . (B.2)

So ReΩ|D3 = 0, ImΩ|D3 = dvol3.

The 3-cycles mirror to D7-branes correspond to 1-cycles parallel to some D3-brane

1-cycle in Σ (compare figures 14 and 17), hence along z = e−iθ (note however that they

stretch between punctures, so they are non-compact). In addition, we need to specify the

two additional directions. They span a semi-infinite line in C described by w = eiθs for
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s ≥ 0, and the S1 direction in C
∗. Such 3-cycles are non-compact and calibrated by Im Ω,

hence preserve the same supersymmetry as the D3-brane 3-cycles.19

A last important point is that for the above 3-cycles, the intersection numbers of the

different 3-cycles is simply given by the intersection numbers of the 1-cycles in Σ.

B.2 Generalization

The above story admits a natural generalization to any toric singularity. The general lesson

is that D7-branes wrapped on holomorphic 4-cycles correspond to 1-cycles stretching be-

tween two punctures in the Riemann surface.20 More specifically, for each bi-fundamental

field in the D3-D3 sector, one can construct a supersymmetric D7-brane, with a superpo-

tential coupling 33-37-73 to precisely such bi-fundamental.21

As discussed above, this rule is manifest in the dimer graph. Moreover it implies that

for a fixed choice of a pair of punctures, i.e. for a fixed 4-cycle, there may be a multiplicity

of different D7-branes, which differ by the choice of ‘Chan-Paton action’. For non-orbifold

singularities, this requires some explaining. Even in non-orbifold examples, D7-branes

carry world-volume gauge degrees of freedom. Topologically different choices correspond

to different D7-branes, in the sense that their D3-D7 spectrum and interactions are dif-

ferent. For instance, the choice of Chan-Paton factors in an orbifold model corresponds

to such a topological choice, given by the holonomy of the gauge connection at infinity.

This notion is however general, and can be used even in non-orbifold examples. Namely,

the region at infinity in a non-compact 4-cycle is given, for toric geometries, by a Lens

space S3/Zn. The value of n for a given 4-cycle can be obtained from the web diagram

(equivalently from the 1-cycle in Σ) by computing the bilinear form n = p1q2 − q1p2 for

the (pi, qi) charges of the legs/punctures associated with it. Since H1(S
3/Zn) = Zn, the

holonomy of the gauge connection at infinity is characterized by an element of Zn. This

implies that there are n possible choices of asymptotic behavior of the Chan-Paton bundle

corresponding to D7-branes on such 4-cycle. Effectively, this corresponds to n different

choices of D7-brane, in the sense that each choice leads to a different D3-D7 spectrum and

interactions.

19Clearly, there are other non-compact and supersymmetric 3-cycles in the geometry (mirror to other

B-type branes, like D9-branes with holomorphic gauge bundles). The identification of the above ones as

mirror of the D7-branes is ensured by the fact that the intersection numbers with the D3-brane 3-cycles

reproduce the same D3-D7 spectrum as with orbifold techniques.
20 This relation between bi-fundamentals and 4-cycles is isomorphic to another familiar relation, see

e.g. [48]: given a bi-fundamental multiplet, one can consider the corresponding dibaryonic operator. In the

dual AdS5 × Y5, where Y5 is the base of the conical singularity X6, the dual to the dibaryon is a D3-brane

wrapped on a supersymmetric 3-cycle C3 in X5. The cone over C3 is a holomorphic 4-cycle in X6. This

is the 4-cycle which we are using, in a different setup, to wrap our D7-branes. Notice that the discussion

below on Chan-Paton factors is isomorphic to that in [48, section 2.2.1]. Also note that this correspondence

between bi-fundamentals and D7-branes is valid for a general singularity, even non-toric ones.
21It is important to clarify that in general all these D7-branes are not independent. In the language of

footnote 20, the dibaryons of the bi-fundamental fields are not all independent. Rather, we use this rule to

generate a (possibly redundant) class of D7-branes, their D3-D7 spectra and their interactions, in a simple

fashion.
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Figure 23: Mirror Riemann surface for the dP1 theory. The fact that it comes out to be similar to

the original brane tiling is a property of del Pezzo theories, and not valid for a general singularity.

In fact this is in remarkable agreement with the dimer diagram picture, where there

are indeed n different ways to connect the two punctures by crossing an edge in the tiling

of Σ.

Given a D7-brane, the computation of the D7-D3 spectrum is given by the intersection

numbers of the corresponding 1-cycles, as described above. Similarly, the 37-73-33 inter-

actions correspond to disk diagrams in Σ, and lead to a coupling of the D3-D7 branes to

the 33 bi-fundamental associated to the D7-brane.

Finally, the 77’ sector and its interactions with D3-D7 states are not properly encoded

in the dimer diagram. We leave the general question of characterizing this sector for non-

orbifold singularities as an open question. In the next section, the results we use for the dP1

theory are obtained by requiring consistency upon higgsing the dP1 to the dP0 theory. For a

general toric singularity, the interactions between 77’ and D3-D7 states can be determined

by computing them in a sufficiently large abelian orbifold and partially resolving it to

obtain the singularity of interest.

B.3 D7-branes for the dP1 theory

Let us now consider the case of interest in the main text, namely the dP1 theory. The unit

cell of the dimer diagram and the zig-zag paths are shown in figure 22a. The web diagram

is shown in figure 22b.

The mirror Riemann surface is shown in figure 23.
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Figure 24: The 1-cycles for the four D3-brane gauge factors in the dP1 theory.
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Figure 25: Quiver diagram for the dP1 theory.

Notice the close relation with the dP0 theory, which amounts (up to a trivial relabeling)

to the removal of the edge separating faces 3 and 4 in the dimer diagram, and of the edge

separating faces A and D in the tiling of Σ.

The 1-cycles in Σ corresponding to the different D3-brane gauge group factors are

shown in figure 24

Their intersection number reproduces the quiver of the dP1 theory, see figure 25

Now we can construct the D7-branes associated with the different bi-fundamentals,

and obtain the 3-7 spectrum by computing the intersection numbers. The different D7-

branes, and the resulting extended quivers are shown in figure 26. It is a straightforward

exercise to write down the explicit interaction terms in the presence of these objects (they

correspond to oriented triangles in the extended quivers). In figure 26 we have indicated
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In the quiver we have indicated the 33 bi-fundamental which couples to the corresponding 37 and

73 states.

B B

CC

C

A

B

B

B

CC

C

D

A

B B

CC

C

D

A

B

D

BFlavor mass for 2 Flavor mass for 3Flavor mass for 1a) b) c)

Figure 27: D3 and D7-branes in the dP1 theory studied in section 4. For each D3-brane gauge

factor we have shown the D7-branes leading to the corresponding flavors.

the 33 bifundamental which couples to the 37 and 73 states for each choice of D7-brane.

In the main text we consider introducing a set of D7-branes corresponding to ΣAB,

ΣBC and ΣDB. In order to determine the possible mass terms for the D3-brane flavors,

we need to obtain the coupling of 77’ states to states in the 37 and 37’ sectors, for the

different choices of D3-brane gauge factors. In figure 27 we show the 1-cycles for the gauge

factors 1, 2 and 3 (namely those with extra flavors), along with the D7-brane 1-cycles

intersecting them. Figures (b) and (c) lead to disk diagrams of the kind in figure 20,

making manifest the existence of interactions leading to flavor masses. Figure (a) does

not contain disks, but is the analog of figure 21. Namely there is a 37 − 77′ − 7′3 cou-

pling leading to masses for flavors of gauge factor 1. This can be shown by requiring

consistency with the existence of such coupling in the dP0 theory, upon higgssing the dP1

theory.
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